
Imperial College London
Departement of Computing

Independent Study Option

Optimised Compression of Genetic Sequencing Data

as part of the course
MSc Advanced Computing

Moritz Pflanzer

29th April 2015

Supervisor
Wayne Luk

Abstract

The aim of this report is to outline potential applications of hardware
acceleration for the purpose of genetic sequencing data compression. First
a short summary of the development in the field of DNA sequencing is
provided to explain the need for efficient compression tools. It is followed by
an overview over the basic genetic structures which can be exploited to design
efficient and specialised compressors. The main part of the report comprises
a comprehensive description, evaluation and comparison of the algorithms
currently considered as state of the art. The focus of the evaluation is not only
on the compression ratio but also on the throughput achieved for compressing
the data and (especially) for decompression. The most efficient algorithms are
then considered for an adaptation to Dataflow computing to benefit from the
possibly high throughput and low energy consumption on FPGAs. The scope
of this report is limited to referring to existing hardware implementations
that can be used as building blocks for fully featured compressors.

Contents

List of Figures 4

List of Tables 5

List of Codes 6

1 Introduction 7

2 Theoretical Background 10
2.1 Structure of Genetic Information 10
2.2 Sequencing Data Storage Formats 11

3 Compression Techniques 14
3.1 Specialised Compression Approaches 15

3.1.1 Substitutional . 15
3.1.2 Statistical . 16
3.1.3 Grammatical . 16
3.1.4 Referential . 18
3.1.5 Chaotic . 19

3.2 Objectives of Compression of Genetic Sequencing Data 19

4 Algorithms 22
4.1 General Purpose Compressors 22

4.1.1 gzip . 22
4.1.2 bzip2 . 23
4.1.3 ZPAQ . 24

4.2 fastqz . 24
4.3 fqzcomp . 27
4.4 Quip . 28
4.5 Framework For Referential Sequence Compression (FRESCO) . . 29
4.6 Genome Differential Compressor (GDC 2) 31
4.7 DNA Sequence Reads Compression (DSRC 2) 32
4.8 Overlapping Reads Compression With Minimizers (ORCOM) . . 34
4.9 SeqDB . 35

Imperial College London, Department of Computing 2

Contents

4.10 Sequence Compression Algorithm Using Locally Consistent En-
coding (SCALCE) . 36

4.11 kpath . 37

5 Evaluation 39
5.1 Hardware, Software and Test Data 39
5.2 Results . 42

6 Discussion 49
6.1 Compression Ratio . 50

6.1.1 Compression Techniques 51
6.1.2 File Structure . 52

6.2 (De-)Compression Throughput 53
6.3 Applications in Hardware . 53

7 Conclusion 56

A Additional Tables 58

B Additional Code 62

Bibliography 67

Imperial College London, Department of Computing 3

List of Figures

2.1 Structure of genetic information 11
2.2 Example of a FASTQ formatted DNA sequence of Escherichia coli 12
2.3 Example of a SAM formatted DNA sequence 13

3.1 Lempel-Ziv-Welch compression of a DNA sequence 16
3.2 Arithmetic coding of a DNA sequence 17
3.3 Grammatical representation of a DNA sequence 18
3.4 Referential representation of a DNA sequence 19
3.5 Chaos Game Representation of a DNA sequence 20

4.1 Self synchronisation of reads in fastqz format 26
4.2 Encoding of reference pointers in FRESCO 30
4.3 Two stage reference encoding in GDC 2 33

5.1 Correlation of file size and compression ratio per dataset 43
5.2 Influence of variable read lengths on the compression ratio . . . 44
5.3 Outliers among the datasets 45

6.1 Overall performance of the compressors 50

Imperial College London, Department of Computing 4

List of Tables

4.1 Decoding of quality scores in fastqz format 26

5.1 Processor and memory statistics for the evaluation system . . . 40
5.2 Version information of the evaluated compressors 41
5.3 Summary of the species represented in the evaluation 41
5.4 Summary of algorithm failures 42
5.5 Normalised compression ratio across the datasets 43
5.6 Compression throughput overview 46
5.7 Decompression throughput overview 47
5.8 Compression ratio overview . 48

A.1 Overview over all DNA codons 59
A.2 Detailed information over the genetic sequencing data used in

the evaluation . 60
A.3 List of source code locations for all used specialised compressors 61

Imperial College London, Department of Computing 5

List of Codes

B.1 Sample implementation of the Chaos Game Representation . . . 63
B.2 Sample implementation of the Lempel-Ziv-Welch algorithm . . . 63
B.3 Sample implementation of Arithmetic coding 64

Imperial College London, Department of Computing 6

1
Introduction

The aim of genetics can be formulated as to understand the relation between
genotypes and phenotypes [Mar08]. This knowledge is important for a
better grasp of the genetic diversity among the existing species [Now10]
and to gain deeper information about the mutational spectrum of (model)
organisms [Mar08]. Ultimately, this information leads to both global scale
improvements of the public health [GW13] and small scale personal genom-
ics [Ans09] and personalised medicines [Now10]. Beside the active research
in analysing human cancers [Rei09; PS08] understanding the impact of dif-
ferent genotypes can also help with the research about mental diseases, like
schizophrenia or autism, and the impact of microbial life [Ans09].

The essentiality of a deep understanding of the meaning of the DNA
has driven the need for analysis methods early on. Already in the mid
to late 1970s Sanger et al. [SC75] and Maxam et al. [MG77] developed
independently of each other a method to sequence DNA to determine the
precise order of nucleotides contained. In the beginning the method developed
by Maxam et al. was more efficient but Sanger et al. refined their technique
in the following years and the resulting dideoxy method became the most
used method for DNA sequencing for the next 30 years [Hut07]. During
this time the read length increased from initially 15–200 nucleotides per
fragment [SNC77] to up to 1 000 bases [Now10]. In contrast, the costs for
sequencing have decreased exponentially over the time [Mar08]. While it took
13 years and approximately $3 billion to obtain the first complete sequence
of the human genome (“Human Genome Project”) using new techniques
and automated processes it is now possible to get a “10-fold coverage of the
human genome (30 Gb DNA sequence) [. . .] in a single run for no more
than $15 000–$20 000” [Rei09]. Moreover, instruments have been announced
which will be able to sequence the whole human genome in less than a day
for under $1 000.

Imperial College London, Department of Computing 7

1 Introduction

These new Next-Generation Sequencing (NGS) technologies are different
from the automated Sanger sequencing in that they are able to perform
millions of sequencing reactions in parallel thus allowing a much higher
throughput. Since NGS results in much shorter reads than obtained by
Sanger sequencing their major field of application is genome resequencing.
Even relatively short reads can be mapped onto an existing reference sequence
with high confidentiality. For the more complex de novo sequencing and
assembly NGS have first been combined with Sanger sequencing but due
to that fact that the read lengths are getting competitive with those of the
Sanger sequencing and improved assembly algorithms the use on their own
gets increasingly attractive [Now10].

The rapid and huge enhancements in the area of sequencing technologies
come along with new challenges in the field of bioinformatics. In the first
place there is need for fast algorithms to solve the fragment assembly problem.
Most algorithms are based on reductions to variations of the Eulerian Circuit
Problem (ECP) or similar graph problems [PS11, Chapter 3]. Further, the
enormous amount of data produced by the NGS has not only to be processed
but also do the results of the sequencing have to be stored and shared between
institutions. In recent years the growth in raw output data generated by
the NGS platforms has exceeded Moore’s Law and thus in future more
data will be produced than the amount which can be analysed and stored
efficiently [Kah11]. Thus, although storage and bandwidth costs are steadily
decreasing at a rate of 30%–40% per year [Mee14, Slides 71 and 72] the costs
for maintaining DNA sequence archives have not stopped to grow [GRU14;
DG13]. The reduced storage and transportation costs might be able to
compensate the increasing amount of data that gets generated but due to
the lower costs of running NGS platforms more and more institutions can
afford to perform experiments.

The two most popular data formats for storing sequencing results are
FASTA/FASTQ and SAM/BAM. Aside from the BAM format they are
entirely based on an ASCII plain text representation of the base calls and
quality scores for each sequenced read. Now, to reduce the archival costs,
one can compress these formats – which has been done with BAM – or come
up with new formats that exploit the characteristics of the DNA and also
the sequencing meta-data to allow for higher compression rates. Therefore
Chapter 2 introduces the basic structural concepts of genetic information
and provides a more detailed view on the existing file formats.

In Chapter 3 the different approaches how to compress the data are
outlined and compared against each other. From this key assumptions are
derived which allow to focus on specific subgroups of algorithms in Chapter 4.
First the algorithms are presented and the main features are outlined. Then
in Chapter 5 the algorithms are all tested on the same test data. As the
authors of the different papers use different data or metrics simply comparing

Imperial College London, Department of Computing 8

1 Introduction

the claimed results is not possible. Finally, in Chapter 6 the results are
discussed and further improvements and research directions are stated.

Imperial College London, Department of Computing 9

2
Theoretical Background

In this chapter the basic structure of the genetic information is described as
it can be used to design more effective compression algorithms. Moreover,
the specifications of the existing sequencing data file formats are outlined as
they indicate which features the compressed formats should comprise.

2.1 Structure of Genetic Information
The entire genetic material is described by the term genome which consists
of different genes. Genes divide the encoded information into logical groups
and are mapped to specific loci on a chromosome inside the cell. The
chromosomes are built out of DNA molecules arranged in a two stranded
double helix (Figure 2.1). The two strands are connected by nucleotide pairs
where each base is drawn from the four letter alphabet {A, C, G, T}. The
strands are said to be antiparallel in the sense that one is the reverse of the
other and since the bases normally form the pairs A—T and C—G the strands
are also complementary. The direction of a strand is determined by the
position of the sugar of each nucleotide which can either be 5′ or 3′. If not
specified otherwise a left-to-right orientation is assumed which corresponds
to the 5′ to 3′ polarity.

To encode the alphabet of the 20 naturally occurring amino acids the
nucleotides are grouped into codons with a length of 3 letters. As there are
43 = 64 trinucleotides possible each amino acid is encoded by more than one
codon (Appendix A.1). The triplets are not uniformly distributed over all
amino acids and 3 of the 64 codons are used as special stop codons that do
not encode any amino acid.

In general not all the information contained in the DNA is translated
into gene products. Only Exons form the coding regions of the DNA that
are needed to built RNA or proteins. In contrast Introns are non-coding

Imperial College London, Department of Computing 10

2 Theoretical Background

5′

3′

A
C
G
T
C A

TG
A

C
G

T

Chromosome

Nucleotides

DNA

Figure 2.1 – Structure of genetic information. The genetic information is encoded
through nucleotide base pairs which are arranged in a two stranded double helix. This
DNA forms the chromosomes. The graphic is adapted from DNA Testing Expert (http:
//dnatestingexpert.com/home-2/amazing-dna/).

segments which are removed during the translation. Therefore their main
purpose is to separate different Exons. These spacer regions consist mainly
of microsatellites which are short, highly repetitive k-mers. In addition
to a varying number of repetitions genomes of the same species differ by
single-nucleotide polymorphisms (SNP), insertions and deletions (INDEL).
A SNP describes the mutation of a single base whereas INDELs are either
the occurrence of an extra base in the sequence or the lack of a base.

More detailed information about the biological procedures involved in the
encoding and transcription can be found in the book Computational Genome
Analysis from Deonier et al. [DTW05]. It is excluded from this report as it
seems not relevant for the topic of genetic sequencing data compression.

2.2 Sequencing Data Storage Formats
The most commonly used formats to store DNA sequencing information are
the FASTA/FASTQ and SAM/BAM formats [How13]. Aside from the BAM
format all formats are plain text ASCII formats designed in such a way that
they are easily human readable. The BAM format is a BGZP compressed
version of the SAM format. This compression is a blocked version of the
standard gzip format but allows additionally for random access after an index
has been built.

The FASTA format This is the simplest one of the four formats. It just
contains optional meta-information and the DNA reads (Figure 2.2). The
sequences are encoded as strings of either nucleotide acids or proteins. Nuc-
leotides are encoded using the four letters {A, C, G, T} plus additional

Imperial College London, Department of Computing 11

http://dnatestingexpert.com/home-2/amazing-dna/
http://dnatestingexpert.com/home-2/amazing-dna/

2 Theoretical Background

@SRR001666 .1 071112 _SLXA -EAS1_s_7 :5:1:817:345 length =36
GGGTGATGGCCGCTGCCGATGGCGTCAAATCCCACC
+SRR001666 .1 071112 _SLXA -EAS1_s_7 :5:1:817:345 length =36
IIIIIIIIIIIIIIIIIIIIIIIIIIIIII9IG9IC

Figure 2.2 – Example of a FASTQ formatted DNA sequence of Escherichia coli.
The first and the third line contain meta-information about the DNA sequence and
the experiment in which is has been obtained. The second line is the actual DNA
sequence encoded as nucleotide symbols. The fourth line contains the Phred quality
scores encoded as ASCII characters. To retrieve a valid FASTA formatted file the third
and the fourth line have to be omitted.

letters for positions where the sequencing was not accurate and a hyphen to
indicate a gap. The encoding of proteins uses the letter representations from
the DNA or RNA codon table (Appendix A.1) plus the additional symbols *
for a stop position, X for undetermined protein and a hyphen for a gap. The
format allows to store multiple sequences/reads in one file. The different
sequences are separated by the line containing meta-information and are
therefore allowed to span multiple lines [NCB07].

The FASTQ format In addition to the raw DNA sequences the FASTQ
format contains a quality value, i.e. the probability that the corresponding
base is incorrect, for each nucleotide (Figure 2.2). Thus, unlike the FASTA
format, the FASTQ format only allows nucleotides to be stored and not
codons and the sequences are not allowed to be wrapped over multiple lines.
The probabilities are first converted into a Phred quality score QPhred =
−10 log10(p) which is then encoded as printable ASCII character by adding
33. The highest score that can be stored is 93 but raw read data rarely
exceeds a score of 60. The FASTQ format is fully backwards compatible
with the FASTA format such that FASTQ formatted data can be read out
as FASTA formatted data [Coc+10; Ill11].

The SAM format In contrast to the FAST* sequence formats the SAM
format does not simple store the sequences of nucleotide symbols but
aligns shorter segments (of nucleotide symbols) according to a reference
sequence (Figure 2.3). The relation between each such segment and the refer-
ence sequence (CIGAR string) is also stored. As in the FASTQ format each
nucleotide is assigned a quality value encoded as Phred quality score [SFS15b].

The BAM format To compensate the larger file size of the SAM format
compared to FAST* formatted files the BAM format specifies how to compress
SAM formatted files. The key feature is to still enable random access to
the compressed sequences. For that purpose the BGZF compression is
introduced. It is based on the standard gzip compression algorithms and

Imperial College London, Department of Computing 12

2 Theoretical Background

@HD VN:1.5 SO:coordinate
@SQ SN:ref LN:45
r001 99 ref 7 30 8M2I4M1D3M = 37 39 TTAGATAAAGGATACTG *
r002 0 ref 9 30 3S6M1P1I4M * 0 0 AAAAGATAAGGATA *
r003 0 ref 9 30 5S6M * 0 0 GCCTAAGCTAA *
r004 0 ref 16 30 6M14N5M * 0 0 ATAGCTTCAGC *
r003 2064 ref 29 17 6H5M * 0 0 TAGGC *
r001 147 ref 37 30 9M = 7 -39 CAGCGGCAT *

Figure 2.3 – Example of a SAM formatted DNA sequence. The first two line
contain meta-information about the DNA material. All other lines correspond to
segment which have been aligned to the reference sequence. The fourth column
describes the start position of the segment in the reference sequence, the fifth column
contains the Phred quality scores. The sixth column describes the operations that have
been performed to align the segment (tenth column) and the reference. The example is
adapted from [SFS15b].

compresses the SAM formatted files blockwise. The random access is granted
by generating an index file which contains virtual offsets into the compressed
sequence. Decompression is possible by just using the gunzip tool. As the
normal compression algorithms, namely gzip and bzip2, do not achieve very
high compression rates on DNA sequence data the new format CRAM has
been introduced which allows to replace the compression algorithms with
specialised variants [SFS15b; SFS15a].

Imperial College London, Department of Computing 13

3
Compression Techniques

When talking about compression of DNA sequences it has to be assumed
that the information contained in the DNA is not stored in a truly random
way. Otherwise the best compression that could be achieved would be 2 bit
per base as at least the four symbols {A, C, G, T} have to be encoded.
However, this assumption can safely be made since the DNA is used as
a blueprint to construct proteins in living organisms [BS13]. Having only
random information this seems to to impossible.

A simple first step to achieve compression of genetic sequencing data
would be to use general purpose compression tools like compress, gzip or
bzip2. These tools are based on the well-known and simple Lempel-Ziv(-
Welch) (LZ/LZW) algorithm and the Burrows-Wheeler transform (BWT)
combined with a Move-to-Front (MTF) compression. Additionally the results
are improved by applying Huffman coding as a final step. Compared to the
conventionally used file storage formats (see Section 2.2) these algorithms
result in smaller file sizes. But they are hardly able to perform better
than the theoretical limit of 2 bit per base which can be reached by just
encoding the nucleotides efficiently [BS13]. This is due to fact that these
general purpose algorithms do not exploit the specific structures of DNA.
For instance the BWT is in principle not unsuited for DNA compression
and is used in various compressors, e.g. [JSC14; EV14; Cro+15]. One of the
reasons why it does not work for the bzip2 algorithm is that the window size
might be to small [MSI00]. Considering the structure of DNA the repetitive
patterns occur all over the genome and not just locally. Therefore, to achieve
good results for example a large window size is needed.

Imperial College London, Department of Computing 14

3 Compression Techniques

3.1 Specialised Compression Approaches
Compression algorithms explicitly designed to achieve a high performance
on DNA material can be categorised according to different criteria. Wandelt
et al. [WBL13] suggest to differentiate between algorithms that are suitable to
compress a single, continuous genome sequence and algorithms that are able
to compress multiple separate raw read sequences which may also require to
store quality scores. Further, the mode of operation of the algorithms can be
distinguished [LC14]. The class of horizontal or intra-sequence compressors
makes only use of the information contained within the sequence which has to
be compressed. In contrast, the class of vertical or inter-sequence combines
at least to sequences to compress a subset of the sequences, e.g. through a
referenced based approach.

In addition to the particular mode standard compression techniques can
be applied as pre- or post-processing to achieve better compression results.
A frequently used pre-processing approach is to apply a fixed length bit
encoding to the original file in order to store multiple symbols in one byte.
Post-processing steps can comprise run-length encoding to reduce the number
of repetitive symbols, integer compression schemes such as Golomb coding
or Fibonacci coding and entropy based encodings like Huffman coding and
Arithmetic coding. Examples for more complex pre- and post-processing steps
are the BWT and LZ algorithms which are also commonly used [WBL13].

The rest of this section illustrates the different modes in more detail and
introduces existing algorithms that belong to each type. The focus is thereby
on recently released or still not superseded algorithms. A more comprehensive
list of published compressors is provided by Wandelt et al. [WBL13], Bakr
et al. [BS13] and Giancarlo et al. [GRU14]. Moreover, Deorowicz et al.
[DG13] present an excellent comparison between algorithms for which the
source code has been made available to the public or which are at least
available as binary executable. The information about the algorithms in all
of these lists is obtained from the original papers which makes them hard
to compare since the authors used different test data and targeted different
platforms and sources [DG13].

3.1.1 Substitutional
Substitutional algorithms are normally used in horizontal mode. Although it
is possible to use them to compress multiple sequences (vertical mode) better
results can be achieved by using different algorithms if the sequences have
large parts in common. The aim of substitutional algorithms is to compress
the data by referencing to earlier detected substrings instead of encoding
the repeated sequence twice (Figure 3.1). For this purpose they construct
substring dictionaries on-the-fly or use predefined reference strings. Usually
the dictionary is implicitly included in the compressed output and has to be

Imperial College London, Department of Computing 15

3 Compression Techniques

Output Remaining sequence Dictionary

— GCGTGATGGC A→ 0,C→ 1,G→ 2,T→ 3
2 CGTGATGGC GC→ 4
2, 1 GTGATGGC CG→ 5
2, 1, 2 TGATGGC GT→ 6
2, 1, 2, 3 GATGGC TG→ 7
2, 1, 2, 3, 2 ATGGC GA→ 8
2, 1, 2, 3, 2, 0 TGGC AT→ 9
2, 1, 2, 3, 2, 0, 7 GC TGG→ 10
2, 1, 2, 3, 2, 0, 7, 4 —

Figure 3.1 – Lempel-Ziv-Welch compression of a DNA sequence. First the dic-
tionary is initialised with all the symbols of the alphabet. Then in each step the longest
prefix which is already in the dictionary is replaced by its code and added to the output.
Finally the prefix plus the next character are added as new entry to the dictionary. An
implementation of the algorithm is shown in Code B.2.

rebuilt during decompression but does not consume extra storage capacity,
e.g. LZ and LZW [ZL77; ZL78; Wel84]. Since this type of compression
makes use of integers as indexes for the dictionary a commonly applied
post-processing step is to encode these references more efficiently than the
pure representation. For instance Golomb coding or Fibonacci coding can
be used.

3.1.2 Statistical
Compression algorithms based on statistical models can be considered as an
extension to the dictionary-based, substitutional approach [WBL13]. The
statistical model is used to encode more frequently occurring substrings
with shorter codes, e.g. Huffman coding, or to represent the entire sequence
through a single number as done in Arithmetic coding (Figure 3.2). In the
former case the “dictionaries” can be implemented for example as probabilistic
or prefix trees. In both cases the (initial) model has to be stored in addition
to the compressed output. The better the statistical model is able to predict
the input sequence the higher compression rates can be achieved. For instance
the family of Prediction by partial matching (PPM) algorithms makes use of
Markov models of different orders to predict the best compression for a given
symbol [CW84]. The statistical algorithms can be grouped into those that
use a static model which is obtained upfront and is not altered during the
compression and algorithms which use adaptive models that are updated
during compression.

3.1.3 Grammatical
The idea behind grammar-based compression schemes is to represent the
input as a context-free grammar [KY00]. Since the grammar is able to
generate the original input sequence the grammar itself is stored instead of

Imperial College London, Department of Computing 16

3 Compression Techniques

Lower Upper Subsequence

0.0000000000000000 1.00000000000000000 —
0.0000000000000000 0.45454545454545453 G
0.2892561983471074 0.37190082644628100 GC
0.2892561983471074 0.32682193839218630 GCG
0.3063315347312342 0.31316166928488490 GCGT
0.3063315347312342 0.30943614134652997 GCGTG
0.3088716674164762 0.30915390438150310 GCGTGA
0.3089999569460339 0.30905127275785693 GCGTGAT
0.3089999569460339 0.30902328231504440 GCGTGATG
0.3089999569460339 0.30901055938649320 GCGTGATGG
0.3090067039535989 0.30900863167004605 GCGTGATGGC
0.3090084564230963 0.30900863167004605 GCGTGATGGC¶

(a) Compression

Symbol Probability

A 1/11 ≈ 0.09

C 2/11 ≈ 0.18

G 5/11 ≈ 0.45

T 2/11 ≈ 0.18

¶ 1/11 ≈ 0.09

(b) Model

G T C A ¶0.0 1.00.45 0.64 0.82 0.91

0.29 0.37G T C A ¶
G
T

(c) Visualisation

Figure 3.2 – Arithmetic coding of a DNA sequence. First a model (b) for the
sequence is determined. The model assigns to each symbol in the sequence its frequency.
Additionally the symbol “¶” is added to mark the end of the sequence. The initial
interval [0, 1) is then divided according to the cumulated frequencies (c). In each step
of the compression (a) the subinterval for the particular symbol is chosen and again
split up into the regions for the symbols. The complete sequence GCGTGATGGC is then
represented through any of the numbers in the final interval, e.g. the number 0.309 008 5.
An implementation of the algorithm is shown in Code B.3.

Imperial College London, Department of Computing 17

3 Compression Techniques

Initial rule Final rules

S ::= GCGTGATGGC
S ::= S1GS2AS2S1

S1 ::= GC
S2 ::= TG

Figure 3.3 – Grammatical representation of a DNA sequence. From the initial
rule consisting of the complete sequence subrules are extracted to replace subsequences
by shorter codes. The rule extracting is continued in a recursive manner until no more
symbols can be grouped to form new, non-trivial rules.

the input (Figure 3.3). To achieve higher compression ratios the grammar
can be compressed for example by statistical coders (see Section 3.1.2) [CL04].
Finding an optimal grammar has been proven to be NP-hard [Cha+05] which
makes this approach less interesting for compression of DNA sequences. On
the other hand an advantage is that this technique supports random access
and search in the compressed output [BS13; RK15].

3.1.4 Referential
The referential or relative compression algorithms operate in vertical mode.
From a set of sequences at least one is designated as “reference”. The other
sequences are then encoded by replacing parts common to the references
by pointers (similar to using a dictionary) or by just storing INDELs and
SNPs (Figure 3.4). The popularity of this compression scheme increases
steadily since more and more complete genomes become available and can
be used as shared reference. Especially if inter-species references are used
high compression ratios can be obtained. For instance is 99.9% of the DNA
is identical between all humans and thus can be replaced by much shorter
references. If no suitable reference is available it is also possible to generate
artificial sequences and use them as reference for compression [KPZ11].
To achieve high compression rates a widely identical reference and a good
mapping onto the reference have to be found. To find the best mapping
the reference can be represented as suffix tree or index structure from which
the longest matching parts can be derived. Additional to considering only
exact matches there have been approaches to map also reverse substrings,
complements or palindromes [MSI00]. Even if this intra-sequence compression
technique is used situations can arise where parts of the to be compressed
sequence have to be encoded as raw sequence. For instance, this is the case
if some symbols do not occur in the reference sequence. Also should the raw
encoding be favoured if storing a pointer would result in worse compression,
e.g. for very short matches.

Imperial College London, Department of Computing 18

3 Compression Techniques

Sequences Alignment Output

Reference GAGTGTGAC GAGTG–TGGC IN 5A
Sample GCGTGATGGC GCGTGATGGC DEL —

SNP 1C, 7G

Figure 3.4 – Referential representation of a DNA sequence. First the reference
and the sample sequence have to be aligned. From the alignment the INDELs and SNPs
can be derived and stored as compressed output.

3.1.5 Chaotic
Already 1990 Jeffrey [Jef90] described in his paper ‘Chaos game representation
of gene structure’ fractal structures in DNA sequences. He proposed an
unique Chaos Game Representation (CGR) for genome sequences which is
obtained when the sequence is used as input to the Chaos Game (Figure 3.5).
Therefore the bases {A, C, G, T} span a square and an initial starting point
is defined at the centre of the square. For each nucleotide from the input
sequence a new point is added into the square. It is positioned exactly half
between the last point and the corner corresponding to the nucleotide. In
this setting each point represents the subsequence of bases up to this point.
Moreover, all points in the same quadrant represent subsequences that end
with the base defined by the quadrant. This scheme can by applied in a fractal
like style to further subquadrants. He also considers to extend the scheme to
encode codons instead of nucleotides and there are recent papers which make
use of the CGR to compare DNA sequences [He10; He+12]. Nevertheless,
an application of this approach to the area of DNA compression is not often
mentioned. A reasonable approach is to only store the last point of the CGR
from which the complete sequence can be reconstructed [ANO13]. However,
the authors do not provide a functional algorithm using that technique. A
problem that they discover is the high precision which is needed to store the
floating-point coordinates. Without further post-processing it would be less
efficient than the naive 2 bit encoding for each base.

3.2 Objectives of Compression of Genetic Sequencing
Data

The information contained in the DNA is used in many different ways. For
instance evolutionary relationships can be derived from phylogenetic trees,
the understanding of differences between genome sequences improves medical
treatments and DNA profiles are used to identify individuals. There does
not exists the best representation of the DNA which can be used in all these
cases. In the same manor there is no “one-size-fits-all” tool to compress the
genomic data [GRU14].

Imperial College London, Department of Computing 19

3 Compression Techniques

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A

C

T

G
1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

PS

PE

x

y

x y Subsequence

0.50000000000 0.50000000000 —
0.75000000000 0.75000000000 G
0.37500000000 0.87500000000 GC
0.68750000000 0.93750000000 GCG
0.84375000000 0.46875000000 GCGT
0.92187500000 0.73437500000 GCGTG
0.46093750000 0.36718750000 GCGTGA
0.73046875000 0.18359375000 GCGTGAT
0.86523437500 0.59179687500 GCGTGATG
0.93261718750 0.79589843750 GCGTGATGG
0.46630859375 0.89794921875 GCGTGATGGC

Figure 3.5 – Chaos Game Representation of a DNA sequence. The initial point
PS is set to (0.5, 0.5) and for each symbol in the sequence a point is added halfway
between the last point and the corner which represents the symbol. Every prefix is then
mapped onto an unique point in the graph. The complete sequence GCGTGATGGC is
encoded in the point PE = (0.46630859375, 0.89794921875). An implementation of
the algorithm is shown in Code B.1.

To structure the field of available approaches Cochrane et al. [CCB12]
propose in their paper to find “the best” algorithm for compression according
to the importance of the DNA material and its uniqueness. They suggest to
store rare or physical unique samples of DNA uncompressed and material
obtained through experiments which are easy to reproduce and which have
low costs with increasing compression factors. For experiments used only to
verify existing results they also consider lossy compression and even to store
only the outcome of the experiment.

Roguski et al. [RD14b] refer to the “fundamental principles of science”
which require experiments to be reproducible and hence do not consider lossy
compression as an opportunity. Instead they suggest to differentiate between
scenarios which benefit from high compression ratios and scenarios for which
a high (de-)compression speed is necessary. When the DNA samples are
stored for long term archival a high compression ratio and thus a small
memory consumption is more important then small (de-)compression times.
On the other hand, if the stored data is accessed frequently and used in many
experiments the decompression speed has a major impact on the overall
performance of the complete experiment.

This scheme can be extended by further scenarios where again different
techniques can be more suitable. Instead of increasing the speed of decompres-
sion in general it is also possible to aim at only partial decompression [BP14]
and random access [DDG14] to the compressed data. These ideas allow to
compress larger collections of sequencing data together to achieve a higher
compression ratio. When parts of the compressed material are needed in

Imperial College London, Department of Computing 20

3 Compression Techniques

an experiment they can be decompressed on their own without the need to
decompress the complete collection.

The next step in making the compression of DNA material more useful
is to determine possibilities how analyses can be directly performed on
the compressed information [GRU14]. This would eliminate the need for
decompression and hence reducing the analysis time. Possible applications
comprise among others alignment and comparison of compressed sequences
and building analysis graphs and self-indexes directly from the compressed
material. If more analyses can be extended to operate on compressed data
the value of fast on-the-fly compression algorithms which can be integrated
into the sequencing platforms will increase. Producing the data directly in
compressed form makes the storage of raw intermediate data superfluous
and can reduce the post-processing time significantly.

Imperial College London, Department of Computing 21

4
Algorithms

This chapter describes the details of the algorithms evaluated in this report.
First three general purpose compressors are introduced which are used as
a baseline for later comparison with the specialised algorithms. The focus
for the specialised compressors is on unaligned reads in FASTA or FASTQ
format. Compression of already aligned sequence can efficiently be done with
a referential scheme and is therefore not topic of this report. In each section
one algorithm is introduced and its key features and functionality are shown.
All of the mentioned algorithms are available as source code and released
under some kind of open source license which allows at least the free usage
for evaluation.

4.1 General Purpose Compressors
Although the following three algorithms are not optimised for DNA sequence
compression they are widely used [RD14b]. This might be due to unreliable
and at best prototypical specialised compressor alternatives. Further, they
do not depend on any particular format of input data and achieve at least
a high decompression speed. In this report they are used as baseline to
compare the specialised compression algorithms against.

4.1.1 gzip
The gzip file format [RFC1952] consists of multiple compressed “member”
blocks. Each of the blocks stores a part of the compressed input and
additionally meta-information and information to verify the consistency of
the compressed data. The format itself does not specify how the input is
compressed but the implementation of the gzip utility – it has the same name
as the file format specification – only supports the DEFLATE compression.

Imperial College London, Department of Computing 22

4 Algorithms

DEFLATE specification The DEFLATE data format [RFC1951] uses a
combination of LZ77 compression and Huffman coding. The input is split
up into multiple blocks which are then compressed independently. The LZ77
algorithm uses a sliding 32 kB window to detect repetitions in the input date
which can be replaced by pointers consisting of a backwards distance and a
length. The resulting stream of distances, literals and lengths is then stored
uncompressed or compressed with static or dynamic Huffman codes. To
generate the static Huffman codes the deflate format specifies to additional
rules by which codes of the same length have to be lexicographically ordered
according to the corresponding literals and shorter codes must precede longer
codes lexicographically. These additional rules make it sufficient to only
store the length of the Huffman codes instead of the codes themselves. The
dynamic Huffman codes precede the compressed data in the output stream
and are again compressed with Huffman coding.

Compression The compressor uses a chained hash table to determine re-
peated substrings. It compares the hash over the next three bytes of input
with the values already stored in the table. If no match is found one byte of
the input is copied as literal and the read position is advanced by one byte.
In case of a hash match the longest matching substring is determined and
encoded as pair of (backwards) distance and repeat length. To favour small
distance values the most recently added hashes in the table are checked first.
Further, the compressor implements lazy matching. Even if a match is found
the matcher searches for a longer match starting from the next input byte to
find a potentially longer match. At any time the compressor is allowed to
remove entries from the hash table or to start a new compression block with
cleared Huffman codes.

Decompression The relatively fast decompression is achieved by setting up
hierarchical tables to lookup a variable number of bits from the compressed
data stream [GA]. This is faster than a normal Huffman tree as more than
one bit per level can be decoded. Creating a full table for all codes would
consume too much time especially since the deflate algorithms produces new
Huffman codes very frequently to optimise compression.

4.1.2 bzip2
Data compressed into the bzip2 format start with a header containing
meta-information and an arbitrary number of blocks which are processed
independently [Sew07]. The size of the blocks is fixed at compression and
can have values between 100 kB and 900 kB. Due to backwards compatibility
the first step of the bzip2 compression is a run-length encoding for each
block of data obtained from the input stream. As the author points out
it is not needed as the Burrows-Wheeler transform in the second step can

Imperial College London, Department of Computing 23

4 Algorithms

handle pathological cases too. Although the combination of Burrows-Wheeler
transform with a Move-to-front transform does not decrease the size of the
input directly it is an effective pre-processing step to optimise the overall
compression. The actual compression is done by another instance of run-
length encoding and Huffman coding. The compression ratio is improved by
using multiple Huffman code tables at once and the Huffman code-lengths to
reconstruct the tables during decompression are stored via Delta encoding.
Further, in intermediate steps values are encoded in an unary format and
bitmaps are included to signal which codes are actually used [WikiBzip2].

4.1.3 ZPAQ
The ZPAQ file format is designed to support compression of multiple files
and enables journaling to create incremental archives of data [Mah14]. The
compressed output stream consists of multiple independent blocks and each
block comprises multiple segments, e.g. different files. Beside the compressed
data stream the blocks and segments contain meta-information about the
compressed data. The compression is based on adaptive Arithmetic coding
but arbitrary algorithms are allowed as post-processors. To predict the
probabilities for the Arithmetic coding various context models are supported
which can also be combined into a complete pipeline. The models and the
post-processor are initialised for each block whereas the Arithmetic coder
is reset for each segment. The algorithms to generate the context and the
post-processor are written in a domain specific language ZPAQL and directly
included in the compressed output. The archive size in journaling mode is
further reduced by a deduplication feature.

4.2 fastqz

The fastqz program is designed to compress files in the FASTQ format [BM13].
Each read sequence in the file must not exceed a length of 4 095 bases and
all lines must have the same length. In addition to the bases {A, C, G, T}
the symbol N is allowed to represent any nucleotide which was not read
correctly during sequencing. The information is split up into three streams
and compressed through DNA specific encoding (fast mode). In the slow
mode setting the encoded streams are passed to the ZPAQ algorithm (see
Section 4.1.3). The predefined context models for the ZPAQ compression
algorithm are specific for the compression of sequencing data to optimise
the compression ratio of ZPAQ. Each stream is compressed in a separate
thread to improve the performance on multi-core machines. A fourth stream
is created if an optional reference sequence is specified. This is then used
to store only the differences between the reference and the actual sequence.
Beside these lossless compression techniques the program allows to quantise
the quality values for better compression.

Imperial College London, Department of Computing 24

4 Algorithms

Headers All headers of the read sequences in one FASTQ file begin with
an identifier followed by an optional description. Because of this uniformity
consecutive headers are referentially encoded in such a way that the latter
is described by changes that have to be made to the former header. Digits
are stored as incremental offsets and strings are encoded as pair of start
and length which has to be copied. Everything which cannot be matched is
stored literally. The second header line before the quality values is expected
to empty and is therefore not stored.1 The combined context model used
in the slow mode comprises two direct and two indirect models which use
the column, the byte above and up to four bytes to the left of the current
position as context.

Quality Scores The encoding of the quality scores is based on empirically
determined frequencies of specific symbols and an inherent structure caused
by the sequencing platforms. Although quality values between 0 and 93 are
allowed in the FASTQ format the fastqz tool restricts the upper limit to 71
to create smaller codes.2 Depending on their particular values the scores are
packed as tuple or triple into one byte, are encoded as single byte. As the
sequences tend to start with quality values of 38 a run-length encoding of
up to 55 values is used for this score. Trailing scores of 2 are replaced by
a single terminating byte. The omitted values can be reconstructed during
decoding since the length of the sequence is known (Table 4.1). The context
model for the slow mode uses three direct models. Their context consists of
different parts of the column number and the previous five bytes. They are
combined by a weighted mixer using a 14 bit context.

Base Calls The nucleotide alphabet symbols {A, T, C, G} are mapped
to the numbers from 1 to 4. The symbol N for an undetermined base is
discarded since it can be reconstructed from a quality score of 0. Depending
on the particular subsequence three or four bases can be packed into one byte.
A mapping onto the number from 0 to 3 would allow to encode all bases
with 2 bit but using different code lengths provides a self synchronisation
mechanism. Overlapping reads that start at different offset are likely to
be translated into the same byte sequence which allows for better compres-
sion (Figure 4.1). When the slow mode is enabled three direct and three
indirect context models are used. The contexts of the direct models range
from 4 to 23 bases and are combined with the indirect models by an order 0
bytewise mixer.

1 The FASTQ format specifies the second header to be identical to the main header or
otherwise empty. Thus the assumption that it has to be empty does not affect the
generality of the fastqz tool.

Imperial College London, Department of Computing 25

4 Algorithms

Byte encoding Formulas Phred scores

0 λx . 2 2 until end of read

1..72 λx . x − 1 [0, 71]

73..136 λx . ((x − 73) mod 8) + 31 ([31, 38], [31, 38])
λx .

⌊ x−73
8

⌋
+ 31

137..200 λx . (x − 137) mod 4 + 35 ([35, 38], [35, 38], [35, 38])
λx .

(⌊ x−137
4

⌋
mod 4

)
+ 35

λx . ((x − 137) mod 16) + 35

201..255 λx . x − 200 38 repeated 1 to 55 times

Table 4.1 – Decoding of quality scores in fastqz format. Beside the special
treatment for the scores 2 and 38 each byte is decoded into one to three quality scores.
The score of 38 is handled separately as many sequences tend to start with this value.
Trailing values of 2 are replaced by a single zero terminating byte. Since the length of
the read is known the number of scores can be reconstructed.

Sequence and encoding

1 TGGA ATCA GAT GGA ATCA
11010001 01101101 01000110 01010001 01101101

2 GGA AATC AGAT GGA ATCA
01010001 01011011 10000110 01010001 01101101

3 AATC AGAT GGA ATCA
01011011 10000110 01010001 01101101

Figure 4.1 – Self synchronisation of reads in fastqz format. The sequences #1 and
#2 are shifted by one nucleotide against each other. But due to the variable encoding
of either tree or four bases per byte they synchronise automatically after three bytes.
Sequence #3 has an offset of three nucleotides but since they are encoded as single byte
the encoded sequence matches the encoding of sequence #2 with an offset of one byte.

Imperial College London, Department of Computing 26

4 Algorithms

Referential Encoding The reference sequence must be provided in a packed
format where the nucleotide symbols {A, C, G, T} have been replaced by
the numbers from 0 to 3. The original sequence must not exceed the size of
4GB which implies a limit of 1GB for the packed sequence. The reference
is then divided into subsequences with a length of 32 bases from which
a hash table is constructed. Alignments are searched independently for
each read sequence in the FASTQ file and in both strand directions. The
latter increases the chance to find a match with minimal overhead. The
alignments are determined by comparing a rolling hash over the read against
the reference table. Per match a maximum of four mismatches is allowed
and matches are chosen in such a way that long subsequences which few
mismatches are favoured. If no match is found or all matches are shorter
than half of the read length the entire read is not considered for referential
encoding and represented as a single zero byte in the reference stream. Also
all bases after the fourth mismatch are encoded literally. In contrast matches
are represented as four byte pointer, four mismatch offsets and a direction bit.
All matched nucleotides are deleted from the input stream before encoding
and optional compression. If the slow mode is activated the context used for
ZPAQ compression takes the state of the parser, i.e. the mismatch positions
and the pointer, into account.

4.3 fqzcomp

The fqzcomp tool [BM13] is based on a bytewise Arithmetic coder. The
FASTQ input file is split up into three streams which are the headers, quality
scores and reads. For each stream a different specifically adapted prediction
model is used. Therefore the streams are complete independent of each other
and can be compressed in parallel by utilising multiple threads.

Headers Because of the uniform structure the headers are parsed into
different tokens from which the model parameters are derived. Tokens are
either literals, leading zeros, digits or separators including spaces. For each
header the immediately preceding header is used as context. If the type of
the corresponding tokens matches the values are compared and encoded as
exact match or as delta offset to the previous value for numerical tokens or
character for the other types.

Quality Scores The model for compression of quality values takes into
account that scores seem to be correlated to previous scores in the read and

2 Scores above 60 are rarely produced during sequencing (see http://en.wikipedia.org/
wiki/FASTQ_format, visited on 14/04/2015). Thus the restriction of 71 as maximal
value seems not to affect the generality of the fastqz tool.

Imperial College London, Department of Computing 27

http://en.wikipedia.org/wiki/FASTQ_format
http://en.wikipedia.org/wiki/FASTQ_format

4 Algorithms

reads as a whole tend to have either high or low quality. In contrast to the
FASTQ file format the range of the quality values is restricted to the range
of 0 to 62 and a value of 63 is used to signalise a score of 2 repeated until
the end of the read. The specific combination of these correlations can be
defined through a runtime parameter.

Base Calls The reads itself are compressed with an order-k model such
that at each position the previous k bases form the context for the prediction
of the current base. The parameter k can be defined at run time. To
increase the compression ratio optionally both strands, i.e. also the reverse
complement bases, can be used to update the model. The bases {A, C, G, T}
are encoded as the numbers from 0 to 3. The symbol N which represents
inaccurate base reads is always encoded as the most frequent code to achieve
better compression ratios. During decoding it can be reconstructed since a
quality value of 0 is only allowed for this symbol.

4.4 Quip

Quip [Jon+12] is a statistical compression tool which can handle files in
FASTQ and SAM/BAM format. It is based on an adaptive Arithmetic
coder such that the models are adjusted to the particular data which leads
to improvements in compression especially for long sequences. For non-
referential compression the input is split up into three streams and four
streams otherwise. As the Arithmetic coder strictly separates model and
encoding the same coder is used for all streams and only the models are
exchanged. Additionally, checksums are calculated and storage for small
blocks of the sequences to validate the integrity and the number of reads
and bases is stored to provide information without the need to decompress
the data.

Headers The header information of the FASTQ files is parsed into tokens of
different types and encoded through a mechanism similar to delta encoding.
Repeated tokens are replaced by a reference to the token in the previous
header. Moreover, non matching numerical tokens are encoded as an offset
to the previous number and for literal tokens the longest common prefix with
the previous token is determined. All remaining unmatched characters are
directly encoded.

Quality Scores The quality scores seem to be highly correlated among
each other which makes it sensible to use a Markov model for prediction of
forthcoming values. Due to the large alphabet of potential quality scores
only an order-3 Markov chain is used to keep the number of parameters
small. The context for the Arithmetic coder consists of the last three quality

Imperial College London, Department of Computing 28

4 Algorithms

scores, the position of the current score in the read sequence and the number
of adjacent quality values for which the difference was greater than one.
These values are binned into fixed intervals to further reduce the number of
parameters.

Base Calls As the alphabet of nucleotides is small a Markov chain of order-
12 is used to build the model for reads which means that for every position the
preceding twelve bases estimate the next base. This model can only develop
its full potential if enough training data are available. While it might not be
optimal for very short files in general files interesting for compression contain
millions of reads and are thus much longer than needed for an adequate
training.

Referential Quip also supports compression of SAM/BAM formatted files
if the same reference as for the alignment is passed as optional argument.
Matching read sequences in the SAM/BAM file are replaced by pointers to the
reference while unmatched reads are compressed with the same Arithmetic
coder when not operating in referential mode.

De Novo Assembly Instead of using an external reference to encode match-
ing reads efficiently Quip also supports to create contigs on-the-fly out of
a variable number of reads from the actual sequences. This mode of op-
eration can been categorised as a variant of a LZ algorithm as the “code
words” are derived from an earlier part of the input and can be reconstructed
during decompression. Therefore the assembled contigs do not have to be
stored explicitly and the compressed sequence stays entirely self-contained.
The de novo assembly is optimised for speed as accuracy only affects the
compression rate not the fact of being a lossless compression scheme. Thus
k-mers are indexed via an optimised version of a probabilistic Bloom fil-
ter (dlCBF) [Bon+06] instead of the widely used De Bruijn graphs3. The
reads of the input sequence are then aligned to the assembled contigs via
a seed and extend algorithm and best matches are those with the least
Hamming distance.

4.5 Framework For Referential Sequence Compression
(FRESCO)

The compression tool FRESCO [WL13] uses a referential approach to shrink
the size of DNA sequences. In the current implementation only raw se-
quences over the alphabet {A, C, G, T, N} without any meta-information

3 More information about de novo assembly using De Bruijn graphs is provided in the
book Bioinformatics for Biologists [PS11].

Imperial College London, Department of Computing 29

4 Algorithms

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
G C AT AAAAA CCCCC GGGGG AAA

Reference

CTA A ACCC CGG GG GAAA CT GT
Input

<12,9,T> <10,4,T> <5,5,G>
Output

Figure 4.2 – Encoding of reference pointers in FRESCO. Matches between the
reference and the input sequence are encoded as triples comprising the offset of the
matched sequence in the reference, the length of the match and the base which follows
the match, i.e. the mismatch after the reference. Although the last match (blue) could
also include the last G in the sequence it is encoded as mismatch because otherwise a
special literal representing a “no mismatch” would be needed.

or formatting are valid input. From a collection of sequences one is chosen
as reference and matches between this reference and the other sequences
are encoded as a triple containing the offset in the reference, the length
of the match and the first mismatching character which occurs after the
reference (Figure 4.2). To determine the matches a k-mer hash index is
used and in its standard implementation FRESCO supports three different
strategies to select matches. A greedy search algorithm that uses always the
longest possible matches (BAS) and two optimised strategies for fast lookup
of local matches (LO) and short local matches in contrast to long matches
at a position far away in the reference (LO_MD) respectively. After the
decoding a final compression stage features either plain output (PLAIN),
i.e. no further compression of the reference triples, delta encoding for the
reference triples (DELTA) or a binary compression based on Huffman coding
from the zlib library (COMPACT).

Reference Selection Finding the best reference for a large collection of
sequences is according to the authors a “hard problem” since with a naive
approach the number of compressions to find the best reference is quadratic
in the number of sequences. In their paper they therefore propose a heuristic
to find a good reference at reduced costs. First, one sequence is chosen at
random and said to be the base reference against that all other sequences are
compressed. Then, the pairwise similarity between all sequences – including
the base reference – is determined. The similarity measure is based on
the number of match triples which are shared between both compressed
sequences. Finally, the sequences are recompressed against the sequence with
the highest similarity.

Imperial College London, Department of Computing 30

4 Algorithms

Reference Rewriting If either no good reference is known are simply not
existing FRESCO is able to create a new artificial reference out of a set
of compressed sequences. The new reference is created in such a way that
it has a good match covering for the majority of the sequences in the set.
To adapt the original reference mismatched SNPs are considered which can
easily be derived from the compressed sequence. If a single base change in
the reference at a specific position would turn mismatches into matches for a
majority of the sequences the rewrite is performed. Most benefit is achieved
if the rewrite leads to joining two adjacent reference triples together since
the only mismatching base has been changed positively.

Second Order Compression For a collection of sequences not only the
sequences themselves are similar but also the mappings onto a reference.
Thus FRESCO offers an additional post-processing step in which another
round of referential compression is applied to already compressed sequences.
For each compressed sequence in the collection equal runs of reference triples
are searched in a designated reference – also a compressed sequence – and
again replaced by a pointer into that reference if a match is found. To handle
these large data structures efficiently the comparison is based on hash values
similar to a 1-gram-based index.

4.6 Genome Differential Compressor (GDC 2)
The GDC compression tool is currently available in two different versions
which are not fully compatible to each other. While both target compression
of complete sequence collections in FASTA format the earlier version also
put a focus on random access to the compressed collection [DG11c]. This
has been dropped in the most recent version, namely GDC 2 [DDN15], to
allow for higher compression rates in a second level compression phase. As
the authors propose significant higher compression ratios in the later version
this report focuses on GDC 2.

GDC 2 can be considered as an extension to FRESCO (see Section 4.5).
Both algorithms share a two-stage compression strategy and use LZ compres-
sion4. However, GDC 2 adds various new ideas to push the compression ratio
and speed and is compatible to more variations of the FASTA format. The
first level of compression uses a hash table with linear probing to perform a
LZ factoring between the reference and all sequences. In addition to these
exact matches GDC 2 also searches for short matches representing SNPs
or INDELs that follow exact matches immediately. As these short matches
can be found by just comparing the reference and the sequence without
consulting the hash table they improve the compression speed. The encoding

4 FRESCO uses a LZ77 compression whereas GDC 2 sets on LZSS [SS82] in which the
reference is only chosen if it is not longer then a raw encoding.

Imperial College London, Department of Computing 31

4 Algorithms

of these matches is chosen such that they do not harm the compression ratio.
For a higher compression speed this first stage is completely parallelised by
dispatching the compression of each sequence in an individual thread. During
the second stage the complete collection of referentially compressed sequences
is used as input to another LZ factoring through which common runs of
reference tuples are encoded as reference to one of the sequences (Figure 4.3).
For this purpose a further lookup table is constructed on the fly which means
that only already processed compressed sequences can be used as reference
for the second stage.

The encoded values are then further processed by an Arithmetic coder
and different type specific methods as for instance delta encoding between
actual value and a predicted value for match positions. Collected meta-
information about the sequences are stored in an extra file compressed with
a standard zlib algorithm. Moreover the reference is encoded with a separate
Arithmetic coder.

4.7 DNA Sequence Reads Compression (DSRC 2)

The DSRC 2 framework [DG11b; DG11a] features a standalone application
as well as libraries which can be integrated in Python and C++ programs.
Primarily it is designed for lossless compression of various kinds of FASTQ
format derivatives using statistical compression approaches. But optionally
some information can be stored in a lossy fashion. For instance the quality
values can be binned into a reduced number of categories as stated in a white
paper from the Illumina company [Ill12]. The custom archive format for
DSRC 2 consists of a header containing meta-information about the original
FASTQ file and information about the archive itself, a variable number of
blocks and a footer with information about the different blocks. Each block
has an individual header with information about the contained compressed
data and about the characteristics which were used during compression. The
information of the FASTQ file is divided in three streams and stored in
an encoded format following the header of the block. The first version of
DSRC [RD14b; RD14a] used a slightly different archive format with finer
granularity and additional superblocks to allow fast random access. But the
authors figured out that this features is not used in many cases and there
dropped it in favour of speed improvements. Additionally, in version 2 they
added multithreading and support for reading and writing to pipes for a
better workflow. Further research on multi-task optimisation for DSRC has
been conducted by He et al. [He+14].

Headers The header information is parsed into tokens with the types
constant, numerical and non-numerical. Constant fields are stored only
once per block and reference at every occurrence. Numerical fields are delta

Imperial College London, Department of Computing 32

4 Algorithms

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
A T C AATAC ATCC TTGGG CCC

Reference
R

TTT A AGGA GCA AA ACCA TT GT C
Input

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

A T C AATAC ATCC TTCGA CGT

A T C AATAC ATCC TTAGA CGT

S1

S2

S3

First level factoring (a) Best matches
First level factoring

1 2 3 4 5 6 7 8

L1M, 16, 3 L1M, 3, 7 L1L, A L1L, A L1M, 11, 7 L1L, T L1L, G L1L, CL1

L1M, 1, 3 L1L, A L1M, 5, 6 L1L, C L1M, 12, 6 L1L, T L1L, G L1L, CL2

L1M, 1, 3 L1L, A L1M, 5, 6 L1L, A L1M, 11, 6 L1L, T L1L, G L1L, CL3

(b) First level factoring

<L1M,16,3> <L1M,3,7> <L1L,A> <L1L,A> <L1M,11,7> <L1L,T> <L1L,G> <L1L,C>
Second level factoring

<L2M,2,1,3> <L1L,A> <L2M,2,5,4>

<L1M,1,3> <L1L,A> <L1M,5,6> <L1L,C> <L1M,12,6> <L2M,1,6,3>

D1

D2

D3

(c) Second level factoring

Figure 4.3 – Two stage reference encoding in GDC 2. Prior to the encoding
each sequence is compared to the reference and the best matching subsequences are
determined (a). During the first encoding stage (b) the matches are replaced by pointer
to a position in the reference. The pointer is specified through a triple consisting of type
L1M, the offset and the length of the match. All non matched literals are represented
through a tuple with type L1L and the literal itself. In the second stage (c) each encoded
sequence is compared to its predecessors and equal runs of coding tuples and triples
respectively are substituted for a second level pointer. The quadruple consist of the
type L2M, the index of the predecessor in which the run occurred before, the offset and
the length of the run. All other codes are copied from the first level encoding.

Imperial College London, Department of Computing 33

4 Algorithms

encoded if it is likely to result in a shorter representation. Otherwise the
raw number are stored. For fields containing literal symbols are bit mask
is created which signalise which characters in the field do not vary over
all instances of this field in the block. These values are only stored once
per block. After the individual encodings repetitive values are additionally
run-length encoded and an order-0 Huffman encoding is applied.

Quality Scores The compression of quality values depends on the compres-
sion mode DSRC 2 operates in. In the fast mode setting either run-length
encoding combined with a Huffman entropy coder or an order-1 Huffman
coder with the symbol’s position as context is used. The used model depends
on the particular data and is figured out by the algorithm during runtime.
Furthermore, trailing quality values of 2 are stripped to save even more space.
In higher compression modes an Arithmetic coder is used. The context
comprises the position of the symbol and previous quality value and its size
depends on the level of compression.

Base Calls The compressed stream of nucleotides contains only the four
base symbols from the alphabet {A, C, G, T}. Other symbols which can be
used to encode imprecise calls are transferred over to the quality stream. This
is only possible if they are marked with low quality scores and otherwise the
complete DNA stream of the particular block can only be Huffman encoded.
The regular encoding of the base calls depends on the selected mode of
compression. In fast mode the symbols are just converted in an efficient
2 bit per symbol format. Better compression is achieved if an Arithmetic
coder with contextual probability estimation is used. The order of this
coder depends on the level of compression that is specified. A formerly – in
version 1 – used LZ77 compression is no longer available to achieve higher
compression throughput.

4.8 Overlapping Reads Compression With Minimizers
(ORCOM)

ORCOM [GDR14] is a disk-based, reference-free DNA sequence compressor.
It accepts (potentially gzipped) FASTQ files as input but only processes and
stores the base call information from the files. To compress the data it uses
a binning strategy which groups the reads according to their similarity such
that each group can be compressed independently in parallel.

Binning The reads are categorised according to their minimisers. A min-
imiser is defined as the lexicographically smallest p-mer contained in the
particular read [Rob+04] and its length is considered to be much smaller
than the length of the read. In the ORCOM algorithm the chance to find

Imperial College London, Department of Computing 34

4 Algorithms

matches between the reads is increased by finding minimisers also for the
reversed-complemented form of the read, i.e. the second strand. To circum-
vent the problem of an uneven bin distribution due to minimisers the authors
derive so called signatures from the minimisers which form a restricted subset.
After all reads have been processed the bins are lexicographically sorted
according to the contained reads which are for the sake of the sorting rotated
such that every read has its signature as prefix. This sorting improves the
later compression as overlapping reads are stored close to each other.

Compression The compression is performed independently for each bin and
thus can be executed in parallel. Per bin a referential compression approach is
used which maintains a sliding window over the reads to reduce the amount of
potential references. For each read the best reference is determined according
to a variant of the Hamming distance with weighted penalties. Once the
reference with the smallest distance has been found the read is (conceptually)
aligned to the reference such that the signatures overlap. The referential
matching data is split into different streams depending on the type of the
information. Multiple streams contain meta-information about the reads, the
relation between the reference and the read and about the information stored
in the other streams. For each symbol of the alphabet {A, C, G, T, N} a
stream is created that stores the mismatching symbols. The positions of
matches are stored in a separate stream and additionally run-length encoded.
Further, reads which could not be mapped to a reference sequence are not
encoded but the signature is omitted since it is shared between all reads in
the bin. The stream containing meta-information and the symbol streams
are finally compressed through an order-4 Arithmetic coder5 while all other
streams are handled by the general-purpose compressor PPMd6.

4.9 SeqDB

The SeqDB tool [How13] is a FASTQ compressor with focus on high-
throughput (de-)compression and backwards compatibility. The former is
achieved by using different multithreading techniques and exploiting memory
access optimisations. Instead of a pure decompression mode SeqDB also
features to mount compressed files as FASTQ file through pipes for a simple
integration in existing pipelines. The SeqDB file format specification ab-
stracts from the concrete storage layout. The only requirement is that the

5 The Arithmetic coder used is called Range encoder which itself is based on a conference
paper from 1979 [Mar79]. The source code and further information can be obtained
from http://www.compressconsult.com/rangecoder/ (visited on 18/04/2015).

6 PPMd is based on the PPMII algorithm by Shkarin [Shk02]. Further information
and the source codes can be obtained from http://compression.ru/ds/ (visited on
18/04/2015). In ORCOM version J rev.1 is used.

Imperial College London, Department of Computing 35

http://www.compressconsult.com/rangecoder/
http://compression.ru/ds/

4 Algorithms

storage container must be compatible with two dimensional block access.
This requirement allows to provide fast random access into the compressed
data stream but also restricts the most efficient use of SeqDB to files with
fixed read lengths. Nevertheless, variable read lengths can be handled by
initially determining the longest sequence and padding all shorter sequences.
The authors decided to use the HDF5 data model [Gro15] in their provided
implementation of SeqDB.7 The compression itself comprises two stages:
First the data is converted into the internal SeqPack format and is then
compressed using the Blosc (meta-)compressor.

SeqPack For an efficient encoding of base calls and quality scores corres-
ponding items are mapped to an unique position in a 5 × 51 grid. The
bases from the alphabet {N, A, T, C, G} specify the x-coordinate in the
range from 0 to 4 and the ASCII encoded Phred quality scores form the
y-coordinate between 0 and 50. The lookup tables are included in the com-
pressed file such that it is possible to decode the file without having SeqDB
at hand.

Blosc The Blosc (meta-)compressor8 is essentially a framework to optimise
the data flow for compression tasks. It uses efficient cache-blocking techniques
and multithreading to provide a high-throughput compression pipeline. In
its standalone version it also ships with a shuffle pre-processor using SIMD
instructions and the BloscLZ compression algorithm. This is based on a
LZ77 variant called FastLZ 9 and is also highly optimised for compression
speed.

4.10 Sequence Compression Algorithm Using Locally
Consistent Encoding (SCALCE)

Instead of providing a complete compressor the aim of SCALCE [Hac+12] is
to boost the performance of existing algorithms in compressing read sequences.
In their implementation the authors support bzip2 and (parallel) gzip as back
end. To achieve better compression SCALCE clusters the reads of the FASTQ
file according to their similarity. Rather than to compare the complete reads
SCALCE uses a variant of Locally Consistent Parsing (LCP) [SV96] which is
optimised for speed. For each read core substrings are determined by finding
core blocks for distinctive marker symbols and projecting the concatenation of
these blocks into the substring space. The search for all cores is implemented

7 Independent of the work on SeqDB Mason et al. [Mas+10] proposed a new standardised
NGS file format BioHDF which is an extension to the pure HDF5 storage container.

8 Further information about Blosc is provided at http://www.blosc.org/ (visited on
18/04/2015).

9 For further information about FastLZ see http://fastlz.org/ (visited on 18/04/2015).

Imperial College London, Department of Computing 36

http://www.blosc.org/
http://fastlz.org/

4 Algorithms

via the Aho-Corasick matching algorithm [AC75] such that substrings are
found in parallel. The cluster is determined by the longest substring and
if two substrings of the same length are found the already bigger cluster is
preferred.

Since the quality scores are not the primary target of SCALCE they
are simply compressed via an order-3 Arithmetic coder. Optionally a lossy
reduction of the quality values onto their local maxima is provided which
according to the authors improves the compression without reducing the
usability of the data. For the same reason read identifiers are just copied
into a different file and compressed via one of the back end compressors.

4.11 kpath

The kpath [KP15] compressor is based on an adaptive Arithmetic coder to
compress the reads of a FASTQ file – all other information than the read
sequences is discarded. As bootstrapping for the Arithmetic coder an initial
model is obtained from a provided “gzipped” FASTA reference. In contrast
to other referential algorithms the reference used by kpath does not have to
cover the entire to be compressed reads in the input file as it is not used
for alignment. Even if a non-optimal reference is selected the algorithm will
by good chance benefit from the reference and will converge to the actual
data during the compression. During a preprocessing stage reads can be
converted to their reverse complement if this is better represented through
the reference, the reads are reordered to group similar sequences together in
the file and exact duplicates are stored only once. From each read an initial
k-mer (Head) is split off and encoded through a graph-based approach while
the rests (Tails) are fed into the Arithmetic coder.

Read Heads The heads of length k are represented as a traversal in a
complete 4-ary tree of depth k, i.e. a graph which contains every possible
k-mer exactly once as path from the root to a leaf. The traversal is encoded
as a single bitstring according to two rules. Every time a node is visited and
is contained in at least one of the heads a 1 is added to the bitstring. If
the node would create a path that does not represent a head a 0 is added
instead. Finally the bitstring is compressed with the gzip algorithm. To
restore the correct number of heads an additional file is created containing
the counts for each head. Otherwise duplicates would be lost due to the
single representation in the tree.

Read Tails The initial probability distribution for the Arithmetic coder is
obtained from the reference. First a de Bruijn graph is created out of all the
reads in the reference. In this graph each k-mer is represented through a
node an edges are drawn between nodes that overlap in k − 1 nucleotides.

Imperial College London, Department of Computing 37

4 Algorithms

Then the (cumulative) probability distribution for all edges is estimated from
this graphs. It specifies which sequences are used more commonly than the
others. The update of the model can be seen as an order-k Markov chain
for which the probabilities are updated as the graph is traversed during the
compression phase. Moreover, the model is constructed only over the bases
{A, C, G, T}. Every occurrence of the additional symbol N is treated as A.
The correct reconstruction could be achieved by replacing every A with an N
if the corresponding quality score has the lowest possible value.

Imperial College London, Department of Computing 38

5
Evaluation

The evaluation covers all compressors introduced in Chapter 4 over a col-
lection of different datasets. The first part of this chapter outlines the
environment and the data which have been used for the evaluation. The
second part lists and describes the obtained results.

5.1 Hardware, Software and Test Data
The focus of this report is to evaluate the usability of the introduced tools in an
environment which not exclusive to large institutions with high-performance
architectures. Since the sequencing platforms themselves get affordable for
an increasing number of institutions the tools to process the produced should
not harm this positive technological change. Instead of the high-performance
servers with large memories used in most articles the tests have been run on
desktop computers featuring an Intel Haswell processor and 16GB of main
memory. Detailed information is shown in Table 5.1.

On the computers Ubuntu 14.04.1 LTS has been installed as operating
system and all programs have been compiled with the GCC (Ubuntu 4.8.2-
19ubuntu1). In addition to possible program specific options the flag -O3 for
heavy optimisations and SSE and AVX support have been enabled during
compilation. Aside from FRESCO which is the only algorithms that only
supports multithreading via the Boost.Thread library all tools with parallel
execution have been compiled with native C++11 thread support. The
FRESCO tool has been adapted to accept a list of files as in put for the
first compression stage instead of an input directory, unnecessary copying of
the reference sequence has been prevented and the removal and recreation
of the output directory has been disabled. The GDC 2 algorithm was
originally only able to compress FASTA files which had the same number of
reads. By explicitly storing the number of reads of each file in the already

Imperial College London, Department of Computing 39

5 Evaluation

Processor Number i7-4770
Last Level Cache 8MB
Cores 4
Threads 8
Processor Base Frequency 3.4 GHz
Max Turbo Frequency 3.9 GHz
Instruction Set Extensions SSE4.1/4.2, AVX 2.0

Main Memory Size 16GB
HDD Throughput ∼166MB/s

Table 5.1 – Processor and memory statistics for the evaluation
system. The facts about the 4th generation Intel® Core™ i7-4770
processors are taken from http://ark.intel.com/products/75122/
Intel-Core-i7-4770-Processor-8M-Cache-up-to-3_90-GHz. The
hard disk drive throughput has been estimated via the command
dd if=/dev/zero of=./output conv=fdatasync bs=512k count=1k. Syn-
chronisation is needed to eliminate side effects due to caching.

existing description file increases the generality of the tool with a minimal
overhead. At the moment the number of reads for each file is stored as
four byte unsigned integer. However, this changes the archive format and
is not backwards compatible to older versions. In Table 5.2 the versions
of the specialised DNA compressors used are listed and Table A.3 provides
additional information about the locations of the source codes.

The test data have been chosen across different species to measure the
performance on various DNA structures. However, for each species always
more than one sample is available to explore the benefits of referential com-
pression of collections of similar sequences. Furthermore the data comprises
different sequencing techniques such that an influence on the compression
can be evaluated. All sequencing data have been obtained in FASTQ format
as this contains all the information needed. Since fastqz and fqzcomp enforce
the quality score for the symbol N to be zero all files have been pre-processed
to replace non-zero scores. The altered files have then been used for all
evaluations. For GDC 2 these files have been converted to FASTA format
by omitting the second ID line and the quality scores. Further, for FRESCO
all meta-information has been stripped as it can only handle raw sequences
as input. A short overview over the data is provided by Table 5.3 and a
detailed listing of all sequences can be found in Table A.2.

Imperial College London, Department of Computing 40

http://ark.intel.com/products/75122/Intel-Core-i7-4770-Processor-8M-Cache-up-to-3_90-GHz
http://ark.intel.com/products/75122/Intel-Core-i7-4770-Processor-8M-Cache-up-to-3_90-GHz

5 Evaluation

Compressor Version Last update

fastqz 1.5 15/03/2012
fqzcomp 4.6 23/05/2013
Quip 1.1.8-4-g337ca2a 31/03/2015
FRESCO 9ae6dbcb24a 04/12/2014b
GDC 2 2.0 05/03/2015b
DSRC 2 2.0 RC2c 10/12/2014
SeqDB 0.2.1 05/01/2015
ORCOM 1.0rc 01/12/2014
SCALCE 1 21/04/2015
kpath 0.6.3 (1-6-15) 06/01/2015
a ID of the last commit as no official version number is available.
b Date of the last official update. Sources have been changed within the scope of this report.
c The branch dna-extra-symbols-fix has been used.

Table 5.2 – Version information of the evaluated compressors. Unless otherwise
stated the sources have not been altered and compiled as specified in the corresponding
documentation.

Species Num. of sequences Avg. size on disk [MB]

Arabidopsis thaliana 5 243
Escherichia coli 10 838
Gorilla 2 30 363
Homo sapiens 5 13 954
Mus musculus 5 2 731
Ceratotherium simum 3 39 645

Table 5.3 – Summary of the species represented in the evaluation. The data have
been chosen to represent various DNA structures and different sizes to measure the
generality of the algorithms. The average file size relates to the pre-processed FASTQ
files.

Imperial College London, Department of Computing 41

5 Evaluation

gd
c2

or
co
m

fre
sc
o

se
qd
b

ds
rc-
m0

ds
rc-
m2

qu
ip

qu
ip-
a

fq
zc
om

p
fas

tq
z

fas
tq
z-r

sc
alc

e
kp
at
h

A. thaliana 3 3 3a 3 3 3 3 3 3 3 3 3 3

E. coli 7b,c 3 7c 3 3 3 3 3 3 3 3 3 3

Gorilla 7d 3 7e 3 3 3 3 3 3 3 7g 3 7b

H. sapiens 7d 7? 7e 3 3 3 3 3 3 7f 7f 7f 7b

M. musculus 7d 3 7e 3 3 3 3 3 3 3 3 3 7b

C. simum 7d 3 7e 3 3 3 3 3 3 3 7g 3 7b

a After the limit of 12 hours only the first compression stage was finished.
b Not enough RAM (not crashing).
c Manually aborted after 12 hours.
d Not enough RAM (std::bad_alloc).
e “Killed” by the operating system due to excessive memory consumption.
f Variable number of base calls not supported.
g Reference larger than 1GB not supported.
? Unknown error during execution.

Table 5.4 – Summary of algorithm failures. The checkmark (3) indicates that the
corresponding algorithm completed without any error on the dataset. An x mark (7)
represents an error during runtime. The reason for the abort is specified in the table
notes.

5.2 Results
This section provides an overview over the results produced within the
scope of this report. Each finding is briefly described and backed up by
measurements and statistics.

Problems during execution Due to the different requirements that the
compressors impose on the data and on the hardware not all algorithms
succeeded on all datasets. Some problems occurred because of structural
problems with the input files. For example did not all compressors allow
the read length to differ throughout the file. Nevertheless was the majority
of errors caused by insufficiently careful memory management. Table 5.4
summarises the various problems which caused the algorithms to fail.

Influence of the file sizes With respect to the average over all datasets
and algorithms the results do not show a significant correlation between the
size of the data files and the compression ratio (see Table 5.5). In contrast,
the evaluation showed that depending on the algorithm the compression
ratio indeed correlates with the size of the file (see Figure 5.1). For instance
for the ORCOM algorithm smaller files tend to have smaller compression
ratios whereas the DSRC 2 compressors are not affected by the size.

Imperial College London, Department of Computing 42

5 Evaluation

Dataset Avg. file size [GB] Avg. Norm. compression ratio

A. thaliana 0.24 0.74
E. coli 0.84 0.78
Gorilla 30.36 0.81
H. sapiens 13.95 0.77
M. musculus 2.73 0.81
C. simum 39.65 0.76

Table 5.5 – Normalised compression ratio across the datasets. The compression
ratio seems not to be correlated with the size of the files in the datasets. For each
algorithm the compression ratio has been normalised over all datasets. The average is
performed over all algorithms and all files in the particular dataset.

File size [B] × 108
1.5 2 2.5 3 3.5

N
or

m
. c

om
pr

es
si

on
 ra

tio

0.7

0.8

0.9

1

fastqz
fastqz-ref
dsrc-m0
dsrc-m2
orcom
scalce
kpath

(a) A. thaliana
File size [B] × 108

0 2 4 6 8 10 12 14

N
or

m
. c

om
pr

es
si

on
 ra

tio

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fastqz
fastqz-ref
dsrc-m0
dsrc-m2
orcom
scalce
kpath

(b) E. coli

Figure 5.1 – Correlation of file size and compression ratio per dataset. For both
datasets A. thaliana (a) and E. coli (b) the algorithms ORCOM and kpath show a
strong linear positive correlation between the file size and the compression ratio. The
parameters are still correlated for the compressors fastqz and SCALCE whereas the
figures show no significant correlation for DSRC 2 and the referential approach of fastqz.

Imperial College London, Department of Computing 43

5 Evaluation

ERR039480 ERR039481 ERR039482 ERR039483 ERR039484 SRR824885

Re
l.

co
m

pr
es

si
on

 ra
tio

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H. sapiens
M. musculus

Figure 5.2 – Influence of variable read lengths on the compression ratio. Files
containing reads with a variable number of base calls tend to have smaller compression
ratios than for files with reads of fixed length. The visualised compression ratios
correspond to files with variable read lengths. The compression ratios are relative to a
normalised average compression ratio of 1 obtained from the files with reads of fixed
length.

Influence of variable read lengths The comparison in Figure 5.2 shows
worse than average compression results for files that contained reads of
variable lengths. The biggest fall-off in the compression ratio of variable
length reads can be noticed for three files in the H. sapiens dataset which
comprises read lengths between 4 and 2 876. Their relative compression ratio
is around 40% below the average compression ratio of a control group of
files with fixed read lengths for the human genome.10 The compression ratio
of the only file in the M. musculus dataset with variable read lengths is only
about 78% as high as the compression ratio of the other files in this dataset.

Outliers among the datasets Despite the deviations due to the file
size and the read length the files ERR850562_1 (M. musculus) and
SRR409142_1 (C. simum) exhibit significant better than average com-
pression ratios and speeds (see Figure 5.3). The decompression throughput
for the file SRR409142_1 is only similar to the average. This is due to the
significant worse results of drsc-m0 and seqdb on this file (on average both
obtain at most 29% of the average performance, data not shown).

Compression throughput The compression throughput for all algorithms
on each dataset is shown in Table 5.6. The highest throughput of 537MB/s
is achieved by SeqDB on the E. coli dataset. Over all datasets SeqDB and

10 The dataset of the species H. sapiens does not contain files with reads of fixed length.
Thus for the purpose of this statistic an additional group of files with similar character-
istics has been evaluated. The identifiers of the files are ERR018416_1, ERR018417_1,
ERR018418_1, ERR018419_1, ERR018420_1, ERR018421_1 and ERR018422_1.

Imperial College London, Department of Computing 44

5 Evaluation

N
or

m
. c

om
pr

es
si

on
 ra

tio

0

0.2

0.4

0.6

0.8

1

1.2

ERR850562_1
SRR409142_1
Average

(a) Compression ratio
N

or
m

. c
om

pr
es

si
on

 th
ro

ug
hp

ut

0

0.2

0.4

0.6

0.8

1

1.2

ERR850562_1
SRR409142_1
Average

(b) Comp. throughput

N
or

m
. d

ec
om

pr
es

si
on

 ra
tio

0

0.2

0.4

0.6

0.8

1

1.2

ERR850562_1
SRR409142_1
Average

(c) Decomp. throughput

Figure 5.3 – Outliers among the datasets. The files ERR850562_1 (M. musculus)
and SRR409142_1 (C. simum) have significant better compression characteristics than
the average. While the compression ratio (a) and the compression throughput (b) of
both files are above the average the decompression throughput (c) of the first file is
slightly below the average. All sizes have been normalised according to the respective
dataset.

DSRC 2 have the highest performance whereas GDC 2 and FRESCO are
significantly slower than all other algorithms. Among the general purpose
compressors ZPAQ is approximately five times faster than gzip and bzip2
which puts it in the middle of the field. The global average of the compression
throughput evaluates to 79MB/s.

Decompression throughput Table 5.7 provides an overview over the de-
compression throughputs for all algorithms on the different datasets. The
maximum throughput of 588MB/s is reached by SeqDB on the A. thali-
ana dataset but a similar high throughput is reached by ORCOM on the
E. coli dataset. Also on the other datasets ORCOM shows high throughputs
between 200MB/s and 500MB/s and shares the first place with DSRC 2
and SeqDB. The compressors fastqz and kpath are placed on the low ranks
with a throughput around 6MB/s to 9MB/s. Out of the group of general
purpose compressors gzip features the shortest decompression times and its
throughput of 142MB/s is significantly above the global average of 122MB/s.

Compression ratio The compression ratios cannot be compared across
the different types of compressors as for instance quality values tend to be
harder to compress than nucleotide sequences. Therefore the compressors in
Table 5.8 are grouped according to the type of their compressed output. In
the group of the fully featured FASTQ compressors the referential version
of fastqz achieves the highest compression ratio of 6.77 on the A. thaliana
dataset. For the other species also fqzcomp and the non-referential version
of fastqz obtain compression ratios above 5. Remarkable is the low ratio of
SeqDB which lies with 2.27 even below the results of the general purpose

Imperial College London, Department of Computing 45

5 Evaluation

A. thali-
ana

E. coli Gorilla H. sapi-
ens

M. mus-
culus

C. simum

gzip 16.25 14.65 15.87 14.18 17.93 14.51
bzip2 16.25 15.45 14.85 16.33 13.78 14.88
zpaq 84.09 93.35 76.60 73.36 70.70 72.09
fastqz 10.60 10.86 9.14 — — 8.54
fastqz-r 8.72 6.84 — — — —
fqzcomp 85.93 60.91 59.56 60.15 63.26 54.03
quip 65.84 68.72 53.64 49.06 51.71 48.48
quip-a 18.71 11.08 22.66 23.13 29.11 32.48
dsrc-m0 395.38 426.24 142.53 135.51 166.05 139.47
dsrc-m2 34.14 72.25 128.44 126.18 80.31 128.08
seqdb 464.88 536.73 100.50 79.66 439.29 115.67
scalce 32.10 46.82 33.49 — — 21.81
gdc2 0.01 — — — — —
orcom 56.73 124.91 57.60 — — 63.97
kpath 7.72 9.32 — — — —
fresco 0.02 — — — — —

Table 5.6 – Compression throughput overview. The compression throughput is
measured in MB/s and defined by input size divided by runtime. The throughputs
represent the average over all files for each dataset. The highest throughput for each
dataset is emphasised.

Imperial College London, Department of Computing 46

5 Evaluation

A. thali-
ana

E. coli Gorilla H. sapi-
ens

M. mus-
culus

C. simum

gzip 181.50 180.20 88.64 127.05 184.27 93.11
bzip2 37.83 35.57 31.48 36.06 39.21 32.28
zpaq 111.03 116.93 95.85 82.53 108.60 66.18
fastqz 9.56 9.70 8.75 — — 8.57
fastqz-r 9.51 9.71 — — — —
fqzcomp 68.17 69.81 53.27 53.59 77.72 50.71
quip 35.08 34.83 31.11 27.18 40.18 27.51
quip-a 15.04 9.94 30.48 23.30 28.50 27.46
dsrc-m0 503.05 497.26 127.88 137.28 404.58 127.97
dsrc-m2 29.59 71.61 118.39 109.00 79.07 103.78
seqdb 588.09 536.38 92.61 68.84 354.14 89.97
scalce 64.82 75.76 59.41 — — 57.44
gdc2 — — — — — —
orcom 338.13 576.40 200.75 — 392.70 214.79
kpath 5.69 6.50 — — — —
fresco 21.05 — — — — —

Table 5.7 – Decompression throughput overview. The decompression throughput
is measured in MB/s and defined by output size divided by runtime. The throughputs
represent the average over all files for each dataset. The highest throughput for each
dataset is emphasised.

Imperial College London, Department of Computing 47

5 Evaluation

A. thali-
ana

E. coli Gorilla H. sapi-
ens

M. mus-
culus

C. simum

gzip 2.98 2.82 3.16 3.01 3.20 2.90
bzip2 3.77 3.45 4.01 3.86 4.02 3.63
zpaq 2.71 2.51 2.84 2.78 2.88 2.61
fastqz 5.82 5.88 5.56 — 5.70 5.39
fastqz-r 6.77 6.25 — — 5.94 —
fqzcomp 5.04 4.61 5.38 4.73 5.37 4.78
quip 4.93 4.61 5.35 4.35 5.14 4.86
quip-a 4.93 4.85 5.43 4.35 5.14 4.90
dsrc-m0 4.13 3.88 4.45 3.92 4.47 4.07
dsrc-m2 4.70 4.30 5.13 4.66 5.01 4.69
seqdb 2.26 2.25 2.32 2.17 2.46 2.18
scalce 5.32 5.68 5.40 — 5.33 5.29

gdc2 2.68 — — — — —
orcom 13.23 32.10 14.44 — 13.35 18.45
kpath 12.49 30.54 — — — —

fresco 7.72 — — — — —

Table 5.8 – Compression ratio overview. The compression ratio is defined as the
uncompressed file size divided by the compressed size. The uncompressed file size is
chosen according to the type of the compressed output, e.g. fresco only compresses
raw sequences and thus the size of the uncompressed raw sequence file is used. The
ratios represent the average over all files for each dataset. The algorithms are grouped
according to the type (FASTQ, FASTA, raw sequence) of the compressed output and
the highest ratio for each group per dataset is emphasised.

compressors. Among the FASTA compressors ORCOM and kpath share the
highest results of ratios between 10 and 30. The only successful evaluation
of GDC 2 on the A. thaliana dataset yields a significantly worse ratio of
2.68. FRESCO is the only algorithm which can only compress raw sequence
information but has with 7.72 also a lower compression ratio than the FASTA
compressors.

Imperial College London, Department of Computing 48

6
Discussion

During the evaluation of the different compressors it became clear that
only very few of them can be considered as a stable, well-documented and
ready to use tools. For instance fastqz and fqzcomp were created as proof
of concept within the scope of the Sequence Squeeze competition [HL13].
While providing new insights and contributing ideas in the field of genetic
sequencing data compression their development seems to be discontinued (see
Table 5.2). Moreover, on large datasets ORCOM, FRESCO and GDC 2
crashed, got “killed” or exited in a controlled way (see Table 5.4) but without
any helpful information about the cause. Despite from incompatibilities
during compilation of DSRC 2 this algorithm as well as Quip and SeqDB
made a good impression and especially the latter ones provide a reasonable
documentation.

Most of the tools were able to operate reasonably well with the limited
amount of 16GB of available RAM. Only GDC 2, FRESCO and kpath failed
to compress all but the smallest files. While kpath simply slowed down as
the system was running out of free memory GDC 2 and FRESCO either
tried to allocate more memory than the remaining free space and crashed or
got “killed” by the system due to excessive memory usage. The authors of
kpath already warn in their paper that much memory is needed to construct
the required data structures and also GDC 2 has always been executed with
more available memory. But especially for FRESCO the failure surprised
as the authors claim in their paper to have run all their experiments on a
laptop with no more than 2GB RAM. Aside from the A. thaliana dataset
for which the first stage completed after 1.3 hours all other runs have been
manually aborted after 12 hours without any result. Among the runs which
finished on this dataset only GDC 2 was slower with 2.6 hours.

Imperial College London, Department of Computing 49

6 Discussion

Compression ratio
2 4 6 8 10 12 14 16 18 20 22

C
om

pr
es

si
on

 T
hr

ou
gh

pu
t [

M
B/

s]

0

50

100

150

200

250

300

350
gzip
bzip2
zpaq
fastqz
fastq-ref
fqz_comp
quip
quip-ass
dsrc-m0
dsrc-m2
fresco
gdc2
seqdb
orcom
scalce
kpath

(a) Compression performance

Compression ratio
2 4 6 8 10 12 14 16 18 20 22

D
ec

om
pr

es
si

on
 T

hr
ou

gh
pu

t [
M

B/
s]

0

50

100

150

200

250

300

350
gzip
bzip2
zpaq
fastqz
fastq-ref
fqz_comp
quip
quip-ass
dsrc-m0
dsrc-m2
fresco
seqdb
orcom
scalce
kpath

(b) Decompression performance

Figure 6.1 – Overall performance of the compressors. In (a) the compression ratio
is plotted against the compression throughput and in (b) it is plotted against the
decompression throughput. An optimal algorithm would be positioned in the right upper
corner achieving a high compression ratio with little runtime. The dashed grey line
indicates the compression ratio which can be achieved by converting raw sequences in
ASCII format into a 2-bit-representation. The light grey areas visualise Pareto fronts for
better comparison of the algorithms.

The next two sections discuss the results regarding the compression ratio
and the (de-)compression throughput respectively. A comparison of the
overall performance of all algorithms is illustrated in Figure 6.1.

6.1 Compression Ratio
The obtained results cover two different areas which have to be discussed.
Primarily, the different compression techniques have to be compared against
their performance. But the results also show an influence of the files which
are going to be compressed.

Imperial College London, Department of Computing 50

6 Discussion

6.1.1 Compression Techniques
Comparing the full FASTQ compressors against those which only aim to
compress FASTA files or raw sequences would not be fair. Due to the
larger alphabet size the quality values in FASTQ files tend to be harder to
compress [Hac+12].

The overall highest compression ratio among the FASTQ compressors
has been obtained with the referential compression mode of fastqz. The
compressors was able to shrink the FASTQ file to nearly one seventh of
its original size. Moreover, on all datasets on which the referential mode
of fastqz has been evaluated it placed first outperforming all other FASTQ
compressors in terms of the compression ratio (see Table 5.8). The better
compression ratio is founded in the fact that instead of storing the sequences
themselves only pointers to positions in the reference are stored. If long
matches are found during compression storing only the “address” of a match
significantly outweighs storing the complete matching sequence. Furthermore,
the model used for compression of quality scores must be efficient in fastqz
as these values contribute to a large portion of the compressed files [Jon+12].
This assumption is supported by fact that fastqz in non-referential mode is
ranked just below the referential mode in terms of the compression ratio.

Despite the naturally higher compression ratios that referential com-
pression algorithms achieve they come along with the risk of loosing all
information about the compressed content if the external reference gets
inaccessible [Jon+12]. A promising alternative is to create a self-contained
archive from a collection of files instead of compressing single files on their
own. A subset of the collection is then used as meta-references to compress
the remaining sequences. These meta-references can later be compressed
by a different, independent algorithm. This scheme is implemented by the
FASTA compressors GDC 2 and FRESCO. While FRESCO obtains at least
a compression ratio higher than the baseline of two bit per base call GDC 2
was only able to reduce the file size by a factor of 2.7. These results con-
trast with the ratios reported in the respective papers about the algorithms.
Possible reasons for the differences might be the smaller amount of RAM
that was available and the small size of the datasets. It can be expected
that the performance of this kind of algorithms increases with the size of the
collection as more reference material is available.

The approach of using these kind of meta-references is nevertheless
promising. The tool ORCOM achieves high compression ratios by using single
reads within one file as reference instead of searching for them throughout a
collection of files. This is further supported by grouping reads according to
their similarity which is implemented in ORCOM, kpath and SCALCE. The
benefits of this strategy are twofold. On the one hand it directly increases
the compression ratio as the offset to reference positions can be encoded
through shorter numbers. On the other hand it helps to maintain the same

Imperial College London, Department of Computing 51

6 Discussion

compression ratio while using smaller blocks or window sizes since good
reference are closer to the matching sequences are not overseen due to small
windows. In the evaluation both ORCOM and kpath achieved much higher
compression ratios than FRESCO and GDC 2 but this result has to be
used with caution since the latter ones seem not to be fully functional. The
FASTQ compressor SCALCE placed after the fastqz compressors by just
using this boosting technique and basic Arithmetic encoding while fastqz
concentrates on effective statistical models.

Instead of using an existing reference Quip performs a de novo assembly
with the first reads of the be compressed files. The obtained contigs are then
used to referentially encode the remaining sequences. Similar to the previous
approaches this creates a self-contained archive while also profiting from the
benefits of a referential compression. The compression ratio of 4.9 is slightly
higher than the ratio in the normal mode and puts Quip in the middle of
the field.

As expected the general purpose compressors occupy the last places with
respect to the compression ratio. Since SCALCE first applies its boosting
strategy and then uses gzip compression the worse performance of gzip alone
affirms the effectiveness of forming clusters within the reads. However,
it might be worth to apply the boosting to other per se better back end
compressors to get even higher compression results. Surprisingly SeqDB has
a compression ratio worse than the general purpose compressors. But this
might be due to the explicit focus on speed rather than on compression.

6.1.2 File Structure
The strong positive correlation between file size and compression ratio for
the algorithms ORCOM and kpath (see Figure 5.1) can be explained by the
clustering and compression strategies that both algorithm use. The larger
the files are the higher are the chance to find similar reads and the larger the
clusters get. These two factors directly influence the referential compression
technique of ORCOM and the Arithmetic coder used in kpath which achieve
better compression results for larger clusters. For SCALCE the correlation
is not that high because the used gzip back end compressor can only benefit
indirectly from the better clustering. The compression improves only if the
number of similar reads that fit into the sliding window of the gzip algorithm
increases. Since DSRC 2 does not perform any reordering of reads it does
not profit from larger files.

Further, the results indicate worse compression ratios for files containing
reads with different lengths. On the dataset chosen in this report the
effect was visible throughout all evaluated algorithms (which are able to
handle variable read lengths). On the dataset for the species M. musculus
a direct comparison was possible as it contained file with uniform reads
as well as well variable read length. For the species H. sapiens a separate

Imperial College London, Department of Computing 52

6 Discussion

dataset with uniform reads has been used to validate the result. However,
to obtain founded results the effect should be studied on larger datasets
and across more different species to rule out other potential causes such as
the distribution of the read lengths or the length of the reads itself. At the
moment one plausible explanation for the results is a worse behaviour of the
used statistical algorithms on reads with variable lengths. It might be the
case that the prediction of the derived models is better suited for reads of
the same length. Moreover there might be a direct connection between the
worse compression ratio and the biological reason that caused the shorter
reads during sequencing.

6.2 (De-)Compression Throughput

In general a high compression ratio implies low (de-)compression throughput.
This seems to be obvious as lower compression ratios imply further that
less work has to be done to achieve the ratio. Moreover, on average the
decompression throughput is higher than the compression throughput. While
for compression the files had to be parsed and models had to be obtained
these pre-processing is not necessary for decompression which reduces the
work that has to be done. Especially for ORCOM this has a major impact.
During compression the binning algorithm has to be run which accounts
for approximately one third to one half of the compression time and the
best reference for each read has to be determined. As these steps are not
necessary for the decompression its throughput is more than three times
higher.

Except for the compression throughput of SeqDB the multithreaded tools
obtain the highest speeds. While SeqDB has no practical use in terms of
compression due to its small compression ratio both variants of DSRC 2 are
during compression at least on par with slower but more efficient compressors,
e.g. SCALCE. With respect to decompression SCALCE benefits from the
high decompression throughput of gzip (an LZ algorithm) and thus ranks
now better compared to DSRC 2.

The referential compressors fastqz, kpath and the de novo assembly mode
of Quip have a comparably low throughput which is attributable to the
search for matches between the reference and the to be compressed sequences
or the assembly step respectively and more complex compressors back ends.
For instance is Arithmetic coding known to be quite slow in comparison to
other statistical compression techniques.

6.3 Applications in Hardware
As described earlier with the advent of NGS techniques the rate at which
new experimental results are produced has overtaken Moore’s law. While

Imperial College London, Department of Computing 53

6 Discussion

currently the amount of data can be handled by distributing the workload of
for instance data compression over multiple cores or processors this approach
must finally reach a point where simply no more parallelism is possible or at
which the energy consumption of such system is no longer sustainable. The
idea is to replace the general purpose processors with specialised Dataflow
engines like FPGAs.

Because of the limited resources that are available on these devices the
focus has been on implementations of substitutional compression algorithms
such as LZ variants. They operate by design in blocks or use a sliding window
which creates an upper bound for the needed working memory and only
require a single pass over the input data which allows for efficient pipelining
and a high throughput. Li et al. [Li+14] and Leavline et al. [LAS13] propose
a hardware implementation of the LZMA algorithm which is a more soph-
isticated variant of the LZ77 algorithm and makes use of a range coder as
post-processor. A parallel implementation of LZW is provided by Cui et al.
[CW08]. The parallel design is enabled by using a hierarchy of small diction-
aries instead of a large global one. This also circumvents the problem of slow,
large string comparisons for later added dictionary entries. In their paper
the author claim to reach a peak throughput of approximately 200MB/s
which would be competitive to the evaluated software based compression
algorithms. Finally a fully featured gzip implementation is presented by
Rigler et al. [RBK07] and Rigler [Rig07] but the authors remark that their
design has to be further improved to be competitive with software based
implementations.

While these general purpose algorithm on their own have not been com-
petitive in compressing genomic data (see results of gzip) they achieved good
results when combined with boosting techniques prior to the compression (see
results of SCALCE). In SCALCE the boosting consists of finding core sub-
strings for the reads and a pattern matching based on the Aho-Corasick
algorithm. As determining the core substrings is a simple linear operation
on the reads and Vidanagamachchi et al. [Vid+11] and Chen et al. [CW13]
provide information about an implementation of the Aho-Corasick algorithm
in hardware it should be possible to adapt the SCALCE algorithm to run
on an FPGA. Moreover the boosting is not limited to the implementation
of SCALCE. ORCOM uses a different binning approach but has the same
goal to group similar reads and Tan [Tan14] evaluated the application of
K-means clustering as pre-processing to improve the later compression. A
hardware implementation of the K-means clustering has already been applied
to DNA microarray data and lead to a ten times speed-up compared to a
software implementation [Hus+11]. An alternative implementation based on
the filtering algorithm and kd-trees has been evaluated by Winterstein et al.
[WBC13]. The authors showed that their implementation uses about five
time less resources than other K-means clustering hardware implementations.

Imperial College London, Department of Computing 54

6 Discussion

In the field of referential compression existing alignment algorithms could
be adapted to find matches between the to be compressed sequence and
the reference. The task of finding matches for the purpose of compression
is insofar easier as any match is suitable11 whereas during the alignment
the best match has to be found. Conversely it is not necessary to match
the complete read at once as done during alignment but for compression it
is also sufficient to split the read into several smaller chunks and to align
them independently. Arram et al. [Arr+13] present an alignment algorithm
with an exact string matcher based on FM-index and an approximate string
matcher based on a seed and extend algorithm. They also mention that for
about 70% to 80% of the reads exact matches can be expected which might
remove the need for the approximate string matches complete if instead a
mismatched read is split up to find shorter alignments.

All approaches so far introduced in this section target mainly the compres-
sion of nucleotide sequences without considering additional meta-information.
To compress for instance the quality scores in FASTQ files the evaluated
algorithms used high-order statistical models to achieve good predictions.
Although there are implementations of Arithmetic coders for FPGAs they
mostly miss the support for complex models and do not provide high compres-
sion ratios due to hardware limitations [BNK13]. A commonly used variant
is binary Arithmetic coding which can be used to emulate multi-alphabet
coding but also comes to the price of reduced compression ratios.

11 In a naive implementation matches closer to the beginning of the reference would be
beneficial as the number to encode the offset would be smaller. However, this effect can
be reduced by using more sophisticated algorithms.

Imperial College London, Department of Computing 55

7
Conclusion

The in the scope of this report reviewed algorithms are considered to be
the currently best compressors for genetic sequencing data in FASTQ and
FASTA format. They feature lossless compression that allows for around
six times smaller FASTQ files and twenty times smaller FASTA files while
being compliant to different variants of the non standardised formats. Over
the last years the compression ratios have mainly been improved by building
better models for statistical encoding or by combining different techniques to
new compressors. So far the compressors use different models and techniques
to compress the different streams of information which are combined in one
file. For example the compression of base calls is tackled differently from
the compression of the corresponding quality scores. But different structures
within each of the streams are not considered although Nevill-Manning et al.
[NW99] claim that coding regions do not exhibit Markov properties and are
thus incompressible. This would suggest to separate Introns and Exons for
the purpose compression. The highly repetitive Introns should be efficiently
compressible via Run-length encoding techniques and statistical models
whereas Exons might be better compressed via substitutional or referential
approaches if they are not easily predictable. However, prior to developing
techniques to detect coding and non-coding in a time and memory efficient
way the hypothesis of Nevill-Manning et al. [NW99] should be validated by
running experiments on known sequences or by calculating the (Shannon)
entropy for the different types of regions.

The larger amount of time spent for obtaining the models has lately been
compensated by utilising multiple cores. But as most of the well known
compression algorithm are in some way inherently sequential the potential
benefits in this field are limited. Further, the larger models require enormous
amounts of memory and thus cannot be run on everyday desktop computers.
A recent alternative is to increase the pipeline depth instead of trying to

Imperial College London, Department of Computing 56

7 Conclusion

parallelise the algorithms. The introduced adaptations of the evaluated
algorithms to Dataflow computing are a first step into this direction. Though
they seem to match the requirements in theory it has to be verified whether
the proposed combinations of algorithms can be fitted into the available
resources of an FPGA and whether they lead to performance improvements or
at least reduce the energy consumption while providing the same performance.

Regardless of the improvements that might be achieved due to better
lossless compression approaches and more efficient hardware utilisation the
lossless compression approach seems to reach its limits. For this reason it
should be explored which information is applicable for lossy compression
without having an impact on the later use of the data. A first approach is
made by Illumina Inc. [Ill12] that proposed a projection of the forty currently
used quality scores into eight averaged bins. In their evaluation the reduction
of the quality scores lead to 26% smaller FASTQ files without having negative
consequences during subsequent analyses such as SNP calling. Further
research in the field of lossy as well as lossless quality score transformations
has been done by Wan et al. [WAA12] and Yu et al. [Yu+15] found that a
quality reduction even improved the accuracy of genotyping. Additionally
it should be considered to break the backwards compatibility to the old
data formats which have been developed with the aim of being human
readable [WAA12]. Being confronted with the huge amounts of data of NGS
platforms this is clearly no longer the main objective. Thus a new storage
format should be developed and standardised with focus on efficient parsing
through computers and better support for compression. This would free the
compressors from the need to restore the exact variant of the input format
during decompression allowing for faster and compacter compression. For
instance the read identifiers in the FASTQ format are most of the time
identical for all the reads except for a single number indicating the particular
read. This can easily be replaced by a per file global identifier for the
experiment and the used techniques such that each read is only associated
with a single number.

Despite the advances in the compression of the genomic data the files
still need large amounts of disk space to be stored and the compressors have
high demands for RAM which cannot be afforded by all institutions. In
this case the ideas of Cloud Computing and Software as a Service come
to the rescue for small institutions. Instead of transferring and storing all
data locally either only the particular part of the datasets (files) needed are
accessed and copied or the complete processing is done in high performance
data centres and only the results have to be transferred. For instance the
random access to parts of the data and easy integration into existing pipeline
has been targeted by the frameworks BEETL [JSC14], Goby [Cam+13] and
SeqDB [How13].

Imperial College London, Department of Computing 57

A
Additional Tables

Imperial College London, Department of Computing 58

A Additional Tables

1s
t
ba
se

2n
d
ba
se

3r
d
ba
se

T
C

A
G

T
TT

T
Ph

en
yl
al
an
in
e
(F
)

TC
T

Se
rin

e
(S
)

TA
T

Ty
ro
sin

e
(Y

)
TG

T
Cy

st
ein

e
(C

)
T

TT
C

TC
C

TA
C

TG
C

C

TT
A

Le
uc
in
e
(L
)

TC
A

TA
A

St
op

TG
A

St
op

A

TT
G

TC
G

TA
G

St
op

TG
G

Tr
yp
to
ph

an
(W

)
G

C
CT

T
CC

T
Pr
ol
in
e
(P

)
CA

T
H
ist
id
in
e
(H

)
CG

T
Ar

gi
ni
ne

(R
)

T

CT
C

CC
C

CA
C

CG
C

C

CT
A

CC
A

CA
A

Gl
ut
am

in
e
(Q

)
CG

A
A

CT
G

CC
G

CA
G

CG
G

G

A
AT

T
Iso

leu
cin

e
(I)

AC
T

Th
re
on

in
e
(T

)
AA

T
As

pa
ra
gi
ne

(N
)

AG
T

Se
rin

e
(S
)

T

AT
C

AC
C

AA
C

AG
C

C

AT
A

AC
A

AA
A

Ly
sin

e
(K

)
AG

A
Ar

gi
ni
ne

(R
)

A

AT
G

M
et
hi
on

in
e
(M

)
AC

G
AA

G
AG

G
G

G
GT

T
Va

lin
e
(V

)
GC

T
Al
an
in
e
(A

)
GA

T
As

pa
rt
ic

ac
id

(D
)

GG
T

Gl
yc
in
e
(G

)
T

GT
C

GC
C

GA
C

GG
C

C

GT
A

GC
A

GA
A

Gl
ut
am

ic
ac
id

(E
)

GG
A

A

GT
G

GC
G

GA
G

GG
G

G

Ta
bl
e
A
.1

–
O
ve
rv
ie
w
ov
er

al
lD

N
A
co
do

ns
.
Th

e
64

co
do

ns
ar
e
us
ed

to
en
co
de

th
e
20

na
tu
ra
lly

oc
cu
rri
ng

am
in
o
ac
id
sa

nd
th
re
e
sp
ec
ia
ls
to
p

co
do

ns
.
N
ot

al
la

m
in
o
ac
id
s
ar
e
en
co
de
d
by

th
e
sa
m
e
nu

m
be
ro

fc
od

on
s.

Th
e
RN

A
co
do

n
ta
bl
e
ca
n
be

de
riv

ed
fro

m
th
e
D
N
A
co
do

n
ta
bl
e
by

re
pl
ac
in
g
th
e
let

te
r“

T”
wi
th

th
e
let

te
r“

U”
.

Imperial College London, Department of Computing 59

A Additional Tables

Sp
ec
ie
s

ID
Si
ze

on
di
sk

[B
]

R
ea
d
co
un

t
R
ea
d
le
ng

th
P
la
tf
or
m

Te
ch
ni
qu

e

A
ra

bi
do

ps
is

th
al

ia
na

ER
R6

93
88

6
18

53
04

21
2

74
31

60
96

Ill
um

in
a

RA
D
-S
eq

ER
R6

93
96

1
29

28
42

16
5

11
73

41
2

96
Ill
um

in
a

RA
D
-S
eq

ER
R6

93
96

3
24

47
63

04
6

99
74

66
94

Ill
um

in
a

RA
D
-S
eq

ER
R6

94
00

7
15

78
88

64
7

64
35

90
94

Ill
um

in
a

RA
D
-S
eq

ER
R6

94
01

2
33

17
08

73
6

13
61

23
8

93
Ill
um

in
a

RA
D
-S
eq

Es
ch

er
ic

hi
a

co
li

SR
R3

87
47

6
12

61
11

64
95

49
08

16
2

10
0

Ill
um

in
a

W
GS

SR
R3

87
47

7
96

57
84

60
3

37
59

74
5

10
0

Ill
um

in
a

W
GS

SR
R3

87
47

8
99

95
01

40
8

38
90

86
3

10
0

Ill
um

in
a

W
GS

SR
R3

87
47

9
78

33
11

09
3

30
50

21
8

10
0

Ill
um

in
a

W
GS

SR
R3

87
48

0
11

48
58

48
37

44
70

57
6

10
0

Ill
um

in
a

W
GS

SR
R3

87
48

1
14

59
97

36
9

57
03

58
10
0

Ill
um

in
a

W
GS

SR
R3

87
48

2
81

45
06

22
4

31
71

52
6

10
0

Ill
um

in
a

W
GS

SR
R3

87
48

3
63

98
66

62
1

24
92

43
3

10
0

Ill
um

in
a

W
GS

SR
R3

87
48

4
78

40
08

12
7

30
52

93
8

10
0

Ill
um

in
a

W
GS

G
or

ill
a

SR
R9

57
68

2_
1

34
62

73
57

90
7

13
03

54
78
6

10
1

Ill
um

in
a

W
GS

SR
R9

57
68

3_
1

26
09

93
75

36
2

98
34
76

26
10
1

Ill
um

in
a

W
GS

H
om

o
sa

pi
en

s

ER
R0

39
48

0
15

27
40

11
93
1

36
20
12

89
4–
27

16
—

W
GS

ER
R0

39
48

1
14

31
28

97
73
1

35
81
47

02
4–
28

76
—

W
GS

ER
R0

39
48

2
11

42
87

09
27
6

27
59
82

78
4–
27

16
—

W
GS

ER
R0

39
48

3
15

21
70

54
81
3

36
62
26

55
4–
27

16
—

W
GS

ER
R0

39
48

4
13

53
95

13
16
4

33
82
71

69
4–
27

16
—

W
GS

M
us

m
us

cu
lu

s

ER
R8

50
56

2_
1

96
24

04
74

05
72

17
77

68
40

Ill
um

in
a

D
N
as
e-
H
yp

er
se
ns
iti
vi
ty

SR
R8

24
88

5
19

43
21

02
7

60
73

81
6–
34
2

—
RN

A-
Se
q

SR
R8

51
14

5
83

11
36

76
1

49
83

53
5

50
Ill
um

in
a

Ch
IP
-S
eq

SR
R8

51
14

6
20

28
72

66
41

12
14
03

41
50

Ill
um

in
a

Ch
IP
-S
eq

SR
R8

51
14

7
97

71
80

48
6

58
57

36
5

50
Ill
um

in
a

Ch
IP
-S
eq

Ce
ra

to
th

er
iu

m
sim

um
SR

R4
03

46
3_

1
46

43
00

40
04
6

19
51

97
75
0

10
1

Ill
um

in
a

W
GS

SR
R4

03
85

0_
1

56
16

58
25

02
4

23
59

33
25
2

10
1

Ill
um

in
a

W
GS

SR
R4

09
14

2_
1

16
33

92
44

14
5

69
03
57

23
10
1

Ill
um

in
a

W
GS

Ta
bl
e
A
.2

–
D
et
ai
le
d
in
fo
rm

at
io
n
ov
er

th
e
ge
ne
tic

se
qu

en
ci
ng

da
ta

us
ed

in
th
e
ev
al
ua
tio

n.
Th

efi
le
siz

er
ela

te
st
o
th
ea

lre
ad
y
pr
e-
pr
oc
es
se
d

FA
ST

Q
fil
es
.
Th

e
da
ta

an
d
in
fo
rm

at
io
n
ha
ve

be
en

ob
ta
in
ed

fro
m

ht
tp

:/
/w

ww
.e

bi
.a

c.
uk

/
(v
isi
te
d
on

21
/0
4/
20
15
).

Imperial College London, Department of Computing 60

http://www.ebi.ac.uk/

A Additional Tables

C
om

pr
es
so
r

So
ur
ce

co
de

fa
st
qz

ht
tp

:/
/m

at
tm

ah
on

ey
.n

et
/d

c/
fa

st
qz

/
fq
zc
om

p
ht

tp
:/

/s
ou

rc
ef

or
ge

.n
et

/p
ro

je
ct

s/
fq

zc
om

p/
Q
ui
p

ht
tp

:/
/h

om
es

.c
s.

wa
sh

in
gt

on
.e

du
/~

dc
jo

ne
s/

qu
ip

/
ht

tp
s:

//
gi

th
ub

.c
om

/d
cj

on
es

/q
ui

p
FR

ES
CO

ht
tp

s:
//

gi
th

ub
.c

om
/h

ub
sw

/F
RE

SC
Oa

GD
C
2

ht
tp

:/
/s

un
.a

ei
.p

ol
sl

.p
l/

RE
FR

ES
H/

in
de

x.
ph

p?
pa

ge
=p

ro
je

ct
s&

pr
oj

ec
t=

gd
c&

su
bp

ag
e=

ab
ou

tb

D
SR

C
2

ht
tp

:/
/s

un
.a

ei
.p

ol
sl

.p
l/

RE
FR

ES
H/

in
de

x.
ph

p?
pa

ge
=p

ro
je

ct
s&

pr
oj

ec
t=

ds
rc

&s
ub

pa
ge

=a
bo

ut
ht

tp
s:

//
gi

th
ub

.c
om

/l
ro

g/
ds

rc
Se

qD
B

ht
tp

s:
//

bi
tb

uc
ke

t.
or

g/
mh

ow
is

on
/s

eq
db

O
RC

O
M

ht
tp

:/
/s

un
.a

ei
.p

ol
sl

.p
l/

RE
FR

ES
H/

in
de

x.
ph

p?
pa

ge
=p

ro
je

ct
s&

pr
oj

ec
t=

or
co

m&
su

bp
ag

e=
ab

ou
t

ht
tp

s:
//

gi
th

ub
.c

om
/l

ro
g/

or
co

m
SC

AL
CE

ht
tp

:/
/s

fu
-c

om
pb

io
.g

it
hu

b.
io

/s
ca

lc
e/

kp
at
h

ht
tp

:/
/w

ww
.c

s.
cm

u.
ed

u/
~c

ki
ng

sf
/s

of
tw

ar
e/

pa
th

en
c/

a
T
he

ad
ap
te
d
so
ur
ce
s
ar
e
av
ai
la
bl
e
at

ht
tp

s:
//

gi
tl

ab
.d

oc
.i

c.
ac

.u
k/

mp
34

14
/f

re
sc

o.
b
T
he

ad
ap
te
d
so
ur
ce
s
ar
e
av
ai
la
bl
e
at

ht
tp

s:
//

gi
tl

ab
.d

oc
.i

c.
ac

.u
k/

mp
34

14
/g

dc
.

Ta
bl
e
A
.3

–
Li
st

of
so
ur
ce

co
de

lo
ca
tio

ns
fo
r
al
lu

se
d
sp
ec
ia
lis
ed

co
m
pr
es
so
rs
.
Al
lw

eb
sit
es

ha
ve

be
en

vi
sit
ed

on
22
/0
4/
20
15
.

Imperial College London, Department of Computing 61

http://mattmahoney.net/dc/fastqz/
http://sourceforge.net/projects/fqzcomp/
http://homes.cs.washington.edu/~dcjones/quip/
https://github.com/dcjones/quip
https://github.com/hubsw/FRESCO
http://sun.aei.polsl.pl/REFRESH/index.php?page=projects&project=gdc&subpage=about
http://sun.aei.polsl.pl/REFRESH/index.php?page=projects&project=dsrc&subpage=about
https://github.com/lrog/dsrc
https://bitbucket.org/mhowison/seqdb
http://sun.aei.polsl.pl/REFRESH/index.php?page=projects&project=orcom&subpage=about
https://github.com/lrog/orcom
http://sfu-compbio.github.io/scalce/
http://www.cs.cmu.edu/~ckingsf/software/pathenc/
https://gitlab.doc.ic.ac.uk/mp3414/fresco
https://gitlab.doc.ic.ac.uk/mp3414/gdc

B
Additional Code

Imperial College London, Department of Computing 62

B Additional Code

from fractions import Fraction

vertices = {"A" : (Fraction (0), Fraction (0)),
"C" : (Fraction (0), Fraction (1)),
"G" : (Fraction (1), Fraction (1)),
"T" : (Fraction (1), Fraction (0))}

def compress(seq):
x = y = Fraction(1, 2)

for c in seq:
(vx , vy) = vertices.get(c, (x, y))
x = (x + vx) / 2
y = (y + vy) / 2

return (x, y)

def __findRegion(x, y):
if (x < Fraction(1, 2)) & (y < Fraction(1, 2)):

return "A"
elif (x < Fraction(1, 2)) & (y >= Fraction(1, 2)):

return "C"
elif (x >= Fraction(1, 2)) & (y < Fraction(1, 2)):

return "T"
elif (x >= Fraction(1, 2)) & (y >= Fraction(1, 2)):

return "G"

def decompress(point):
(x, y) = point
seq = ""

while (x != Fraction(1, 2)) & (y != Fraction(1, 2)):
symbol = __findRegion(x, y)
seq = symbol + seq

(vx , vy) = vertices.get(symbol)

x = 2 * x - vx
y = 2 * y - vy

return seq

Code B.1 – Sample implementation of the Chaos Game Representation. This
implementation demonstrates the basic principles behind CGR without being further
optimised. After compression the coordinates which represent the sequence are returned.

import math

def createCompressDictionaryFromAlphabet(alphabet):
return {alphabet[i] : i for i in range(len(alphabet))}

def createDecompressDictionaryFromAlphabet(alphabet):
return {i : alphabet[i] for i in range(len(alphabet))}

def compress(uncompressed , dictionary):
w = ""
result = []
dict_size = len(dictionary)

Imperial College London, Department of Computing 63

B Additional Code

for c in uncompressed:
prefix = w + c

if prefix in dictionary:
w = prefix

else:
result.append(dictionary[w])
dictionary[prefix] = dict_size
dict_size += 1
w = c

if w:
result.append(dictionary[w])

return (result , math.ceil(math.log2(dict_size)))

def decompress(compressed , dictionary):
dict_size = len(dictionary)
result = ""

w = compressed.pop(0)

if w in dictionary:
result += dictionary[w]
w = dictionary[w]

else:
raise ValueError(’Bad␣compressed␣symbol:␣%s’ % w)

for k in compressed:
if k in dictionary:

entry = dictionary[k]
elif k == dict_size:

entry = w + w[0]
else:

raise ValueError(’Bad␣compressed␣symbol:␣%s’ % k)

result += entry

dictionary[dict_size] = w + entry [0]
dict_size += 1

w = entry

return result

Code B.2 – Sample implementation of the Lempel-Ziv-Welch algorithm. This
implementation demonstrates the basic principles behind the LZW algorithm without
being further optimised. After compression the compressed sequence and the number of
bits needed per code symbol are returned.

from fractions import Fraction
from math import floor

def createModel(seq):
assert "\x00" not in seq
seq += "\x00"
counts = {}

for c in seq:

Imperial College London, Department of Computing 64

B Additional Code

counts[c] = counts.get(c, 0) + 1

return __buildModel(counts)

def __buildModel(counts):
model = {}
lower = Fraction (0)
upper = Fraction (1)
lettersCount = sum(counts.values ())

for (c, count) in sorted(counts.items(),
key=lambda itemCount : itemCount [::-1],
reverse=True):

upper = lower + Fraction(count , lettersCount)
model[c] = (lower , upper)
lower = upper

return model

def compress(seq , model):
assert "\x00" not in seq
seq += "\x00"
lower = Fraction (0)
upper = Fraction (1)

for c in seq:
characterInterval = model[c]

delta = upper - lower
upper = lower + characterInterval [1] * delta
lower = lower + characterInterval [0] * delta

delta = upper - lower
bits = 0

while delta < 1:
bits += 1
delta *= 2

if bits == 0:
return (lower , upper , 0, Fraction (0))

else:
return (lower , upper , bits , ((lower + upper) / 2))

def decompress(value , model):
seq = ""
flatModel = [(c, lower , upper)

for (c, (lower , upper)) in model.items ()]

while True:
for (c, lower , upper) in flatModel:

if lower <= value < upper:
break

else:
raise AssertionError("Not␣valid␣interval!")

if c == "\x00":
break

delta = upper - lower
value = (value - lower) / delta

Imperial College London, Department of Computing 65

B Additional Code

seq += c

return seq

Code B.3 – Sample implementation of Arithmetic coding. This implementation
demonstrates the basic principles behind Arithmetic coding without being further
optimised. After compression the final interval representing the sequence and the
number of bits needed to represent a number from the final interval are returned.

Imperial College London, Department of Computing 66

Bibliography

[AC75] Alfred V. Aho and Margaret J. Corasick. ‘Efficient String
Matching: An Aid to Bibliographic Search’. In: Commun. ACM
18.6 (1975), pp. 333–340. issn: 0001-0782. doi: 10 . 1145 /
360825.360855.

[ANO13] K. S. Arun, Achuthsankar S. Nair and Oommen V. Oom-
men. ‘A Novel DNA Sequence Compression Method Based
on Chaos Game Representation’. In: International Journal
for Computational Biology (IJCB) 2.1 (2013), pp. 1–11. issn:
2278-8115.

[Ans09] Wilhelm J. Ansorge. ‘Next-generation DNA sequencing tech-
niques’. In: New Biotechnology 25.4 (2009), pp. 195–203. issn:
1871-6784. doi: 10.1016/j.nbt.2008.12.009.

[Arr+13] James Arram et al. ‘Reconfigurable Acceleration of Short Read
Mapping’. In: Field-Programmable Custom Computing Ma-
chines (FCCM), 2013 IEEE 21st Annual International Sym-
posium on. Apr. 2013, pp. 210–217. doi: 10.1109/FCCM.2013.
57.

[BM13] James K. Bonfield and Matthew V. Mahoney. ‘Compression of
FASTQ and SAM Format Sequencing Data’. In: PLoS ONE
8.3 (2013). issn: 19326203. doi: 10.1371/journal.pone.
0059190.

[BNK13] Anton Biasizzo, Franc Novak and Peter Korošec. ‘A
Multi–Alphabet Arithmetic Coding Hardware Implementation
for Small FPGA Devices’. In: Journal of Electrical Engineering
64.1 (2013), pp. 44–49. issn: 1335-3632. doi: 10.2478/jee-
2013-0006.

[Bon+06] Flavio Bonomi et al. ‘An Improved Construction for Counting
Bloom Filters’. In: Algorithms – ESA 2006. Ed. by Yossi Azar
and Thomas Erlebach. Vol. 4168. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2006, pp. 684–695. isbn:
978-3-540-38875-3. doi: 10.1007/11841036_61.

Imperial College London, Department of Computing 67

http://dx.doi.org/10.1145/360825.360855
http://dx.doi.org/10.1145/360825.360855
http://dx.doi.org/10.1016/j.nbt.2008.12.009
http://dx.doi.org/10.1109/FCCM.2013.57
http://dx.doi.org/10.1109/FCCM.2013.57
http://dx.doi.org/10.1371/journal.pone.0059190
http://dx.doi.org/10.1371/journal.pone.0059190
http://dx.doi.org/10.2478/jee-2013-0006
http://dx.doi.org/10.2478/jee-2013-0006
http://dx.doi.org/10.1007/11841036_61

Bibliography

[BP14] Kakoli Banerjee and R. A. Prasad. ‘A new technique in refer-
ence based DNA sequence compression algorithm: Enabling
partial decompression’. In: International Conference of Com-
putational Methods in Sciences and Engineering 2014 (Iccmse
2014) 799 (2014). issn: 0094-243X. doi: 10.1063/1.4897853.

[BS13] Nour S. Bakr and Amr A. Sharawi. ‘DNA Lossless Compres-
sion Algorithms: Review’. In: American Journal of Bioin-
formatics Research 3.3 (2013), pp. 72–81. doi: 10.5923/j.
bioinformatics.20130303.04.

[Cam+13] Fabien Campagne et al. ‘Compression of structured high-
throughput sequencing data’. In: PLoS ONE 8.11 (2013). issn:
19326203. doi: 10.1371/journal.pone.0079871.

[CCB12] Guy Cochrane, Charles E Cook and Ewan Birney. ‘The future
of DNA sequence archiving’. In: GigaScience 1.1 (2012), p. 2.
issn: 2047-217X. doi: 10.1186/2047-217X-1-2.

[Cha+05] Moses Charikar et al. ‘The smallest grammar problem’.
In: IEEE Transactions on Information Theory 51.7 (2005),
pp. 2554–2576. issn: 00189448. doi: 10 . 1109 / TIT . 2005 .
850116.

[CL04] Neva Cherniavsky and Richard Ladner. ‘Grammar-based com-
pression of DNA sequences’. In: DIMACS Working Group on
The Burrows-Wheeler Transform 21 (2004).

[Coc+10] Peter J. A. Cock et al. ‘The Sanger FASTQ file format for
sequences with quality scores, and the Solexa/Illumina FASTQ
variants’. In: Nucleic Acids Research 38.6 (2010), pp. 1767–
1771. doi: 10.1093/nar/gkp1137.

[Cro+15] Maxime Crochemore et al. ‘Computing the Burrows–Wheeler
transform in place and in small space’. In: Journal of Discrete
Algorithms 32.2008217 (2015). issn: 15708667. doi: 10.1016/
j.jda.2015.01.004.

[CW08] Wei Cui and Siliang Wu. ‘An Improved LZW Data Compres-
sion Algorithm and Its VLSI Implementation’. In: Chinese
Journal of Electronics 17.2 (2008).

[CW13] Chien-Chi Chen and Sheng-De Wang. ‘An Efficient Multichar-
acter Transition String-Matching Engine Based on the Aho-
Corasick Algorithm’. In: ACM Transactions on Architecture
and Code Optimization 10.4 (2013). issn: 15443566. doi: 10.
1145/2541228.2541232.

[CW84] John G. Cleary and I. Witten. ‘Data Compression Using Adapt-
ive Coding and Partial String Matching’. In: Communications,
IEEE Transactions on 32.4 (1984), pp. 396–402.

Imperial College London, Department of Computing 68

http://dx.doi.org/10.1063/1.4897853
http://dx.doi.org/10.5923/j.bioinformatics.20130303.04
http://dx.doi.org/10.5923/j.bioinformatics.20130303.04
http://dx.doi.org/10.1371/journal.pone.0079871
http://dx.doi.org/10.1186/2047-217X-1-2
http://dx.doi.org/10.1109/TIT.2005.850116
http://dx.doi.org/10.1109/TIT.2005.850116
http://dx.doi.org/10.1093/nar/gkp1137
http://dx.doi.org/10.1016/j.jda.2015.01.004
http://dx.doi.org/10.1016/j.jda.2015.01.004
http://dx.doi.org/10.1145/2541228.2541232
http://dx.doi.org/10.1145/2541228.2541232

Bibliography

[DDG14] Agnieszka Danek, Sebastian Deorowicz and Szymon Grabow-
ski. ‘Indexing large genome collections on a PC’. In: 9.10
(2014), pp. 1–7. issn: 19326203. doi: 10.1371/journal.pone.
0109384. url: http://arxiv.org/abs/1403.7481.

[DDN15] Sebastian Deorowicz, Agnieszka Danek and Marcin Niemiec.
‘GDC 2: Compression of large collections of genomes’. In:
(2015). arXiv: 1503.01624. url: http://arxiv.org/abs/
1503.01624 (visited on 17/04/2015).

[DG11a] Sebastian Deorowicz and Szymon Grabowski. Compression
of DNA sequence reads in FASTQ format. Supplementary
material. Supplementary Material. 2011.

[DG11b] Sebastian Deorowicz and Szymon Grabowski. ‘Compression
of DNA sequence reads in FASTQ format’. In: Bioinformat-
ics 27.6 (2011), pp. 860–862. issn: 13674803. doi: 10.1093/
bioinformatics/btr014.

[DG11c] Sebastian Deorowicz and Szymon Grabowski. ‘Robust relat-
ive compression of genomes with random access’. In: Bioin-
formatics 27.21 (2011), pp. 2979–2986. issn: 13674803. doi:
10.1093/bioinformatics/btr505.

[DG13] Sebastian Deorowicz and Szymon Grabowski. ‘Data compres-
sion for sequencing data’. In: Algorithms for molecular biology
: AMB 8.1 (2013). issn: 1748-7188. doi: 10.1186/1748-7188-
8-25.

[DTW05] Richard C. Deonier, Simon Tavaré and Michael Waterman.
Computational Genome Analysis. An Introduction. 1st ed.
Springer-Verlag New York, 2005, p. 535. isbn: 978-0-387-98785-
9. doi: 10.1007/0-387-28807-4.

[EV14] James A. Edwards and Uzi Vishkin. ‘Parallel algorithms for
Burrows-Wheeler compression and decompression’. In: Theor-
etical Computer Science 525 (2014), pp. 10–22. issn: 03043975.
doi: 10.1016/j.tcs.2013.10.009.

[GA] Jean-loup Gailly and Mark Adler. GZIP Algorithm. url: http:
//www.gzip.org/algorithm.txt (visited on 13/04/2015).

[GDR14] Szymon Grabowski, Sebastian Deorowicz and Łukasz Roguski.
‘Disk-based compression of data from genome sequencing’.
In: Bioinformatics (2014). doi: 10.1093/bioinformatics/
btu844.

[Gro15] The HDF Group. Hierarchical Data Format, version 5. 1997–
2015. url: http://www.hdfgroup.org/HDF5/ (visited on
18/04/2015).

Imperial College London, Department of Computing 69

http://dx.doi.org/10.1371/journal.pone.0109384
http://dx.doi.org/10.1371/journal.pone.0109384
http://arxiv.org/abs/1403.7481
http://arxiv.org/abs/1503.01624
http://arxiv.org/abs/1503.01624
http://arxiv.org/abs/1503.01624
http://dx.doi.org/10.1093/bioinformatics/btr014
http://dx.doi.org/10.1093/bioinformatics/btr014
http://dx.doi.org/10.1093/bioinformatics/btr505
http://dx.doi.org/10.1186/1748-7188-8-25
http://dx.doi.org/10.1186/1748-7188-8-25
http://dx.doi.org/10.1007/0-387-28807-4
http://dx.doi.org/10.1016/j.tcs.2013.10.009
http://www.gzip.org/algorithm.txt
http://www.gzip.org/algorithm.txt
http://dx.doi.org/10.1093/bioinformatics/btu844
http://dx.doi.org/10.1093/bioinformatics/btu844
http://www.hdfgroup.org/HDF5/

Bibliography

[GRU14] Raffaele Giancarlo, Simona E. Rombo and Filippo Utro. ‘Com-
pressive biological sequence analysis and archival in the era
of high-throughput sequencing technologies’. In: Briefings in
Bioinformatics 15.3 (2014), pp. 390–406. doi: 10.1093/bib/
bbt088.

[GW13] Ayman Grada and Kate Weinbrecht. ‘Next-Generation Sequen-
cing: Methodology and Application’. In: Journal of Investigat-
ive Dermatology 133.8 (2013). doi: 10.1038/jid.2013.248.

[Hac+12] Faraz Hach et al. ‘SCALCE: boosting sequence compression al-
gorithms using locally consistent encoding’. In: Bioinformatics
28.23 (2012), pp. 3051–3057. doi: 10.1093/bioinformatics/
bts593.

[He+12] Ping-an He et al. ‘A 3D graphical representation of protein
sequences based on the Gray code’. In: Journal of Theoretical
Biology 304 (2012), pp. 81–87. issn: 00225193. doi: 10.1016/
j.jtbi.2012.03.023.

[He+14] Na He et al. ‘Multi-task parallel algorithm for DSRC’. In:
Procedia Computer Science 31 (2014), pp. 1133–1139. issn:
18770509. doi: 10.1016/j.procs.2014.05.369.

[He10] P. He. ‘A new graphical representation of similarity/dissim-
ilarity studies of protein sequences’. In: SAR and QSAR in
Environmental Research 21.5–6 (2010), pp. 571–580. issn: 1062-
936X. doi: 10.1080/1062936X.2010.510481.

[HL13] Richard Cg Holland and Nick Lynch. ‘Sequence squeeze: an
open contest for sequence compression’. In: GigaScience 2.1
(2013). issn: 2047-217X. doi: 10.1186/2047-217X-2-5.

[How13] Mark Howison. ‘High-throughput compression of FASTQ data
with SeqDB’. In: IEEE/ACM Transactions on Computational
Biology and Bioinformatics 10.1 (2013), pp. 213–218. issn:
15455963. doi: 10.1109/TCBB.2012.160.

[Hus+11] Hanaa M. Hussain et al. ‘FPGA implementation of K-means
algorithm for bioinformatics application: An accelerated ap-
proach to clustering Microarray data’. In: Proceedings of the
2011 NASA/ESA Conference on Adaptive Hardware and Sys-
tems, AHS 2011 (2011), pp. 248–255. doi: 10.1109/AHS.2011.
5963944.

[Hut07] Clyde A. Hutchison. ‘DNA sequencing: bench to bedside and
beyond’. In: Nucleic Acids Research 35.18 (2007), pp. 6227–
6237. doi: 10.1093/nar/gkm688.

[Ill11] Illumina Inc. CASAVA v.1.8.2 User Guide. Version 15011196
Rev D. 2011.

Imperial College London, Department of Computing 70

http://dx.doi.org/10.1093/bib/bbt088
http://dx.doi.org/10.1093/bib/bbt088
http://dx.doi.org/10.1038/jid.2013.248
http://dx.doi.org/10.1093/bioinformatics/bts593
http://dx.doi.org/10.1093/bioinformatics/bts593
http://dx.doi.org/10.1016/j.jtbi.2012.03.023
http://dx.doi.org/10.1016/j.jtbi.2012.03.023
http://dx.doi.org/10.1016/j.procs.2014.05.369
http://dx.doi.org/10.1080/1062936X.2010.510481
http://dx.doi.org/10.1186/2047-217X-2-5
http://dx.doi.org/10.1109/TCBB.2012.160
http://dx.doi.org/10.1109/AHS.2011.5963944
http://dx.doi.org/10.1109/AHS.2011.5963944
http://dx.doi.org/10.1093/nar/gkm688

Bibliography

[Ill12] Illumina Inc. Reducing Whole-Genome Data Storage Footprint.
White Paper 970-2012-013. 2012.

[Jef90] H. J. Jeffrey. ‘Chaos game representation of gene structure’.
In: Nucleic acids research 18.8 (1990), pp. 2163–2170. issn:
0305-1048. doi: 10.1093/nar/18.8.2163.

[Jon+12] Daniel C. Jones et al. ‘Compression of next-generation se-
quencing reads aided by highly efficient de novo assembly’. In:
Nucleic Acids Research 40.22 (2012), pp. 1–9. issn: 03051048.
doi: 10.1093/nar/gks754.

[JSC14] Lilian Janin, Ole Schulz-Trieglaff and Anthony J Cox. ‘BEETL-
fastq: a searchable compressed archive for DNA reads’. In:
Bioinformatics (Oxford, England) 30.19 (2014). issn: 1367-
4811. doi: 10.1093/bioinformatics/btu387.

[Kah11] Scott D. Kahn. ‘On the Future of Genomic Data’. In: Sci-
ence 331.6018 (2011), pp. 728–729. doi: 10.1126/science.
1197891.

[KP15] Carl Kingsford and Rob Patro. ‘Reference-based compression of
short-read sequences using path encoding’. In: Bioinformatics
(2015). doi: 10.1093/bioinformatics/btv071.

[KPZ11] Shanika Kuruppu, Simon J. Puglisi and Justin Zobel. ‘Refer-
ence sequence construction for relative compression of genomes’.
In: Lecture Notes in Computer Science (including subseries Lec-
ture Notes in Artificial Intelligence and Lecture Notes in Bioin-
formatics) 7024 LNCS (2011), pp. 420–425. issn: 03029743.
doi: 10.1007/978-3-642-24583-1_41.

[KY00] John C. Kieffer and En Hui Yang. ‘Grammar-based codes: a
new class of universal lossless source codes’. In: IEEE Trans-
actions on Information Theory 46.3 (2000), pp. 737–754. issn:
00189448. doi: 10.1109/18.841160.

[LAS13] E Jebamalar Leavline, D Asir Antony and Gnana Singh. ‘Hard-
ware Implementation of LZMA Data Compression Algorithm’.
In: International Journal of Applied Information Systems
(IJAIS) 5.4 (2013), pp. 51–56.

[LC14] N. F. Law and K. O. Cheng. ‘A Survey of Techniques for
Sequence Similarities Matching in Compression’. In: Advances
in Robotics & Automation 3.1 (2014). doi: 10.4172/2168-
9695.100011.

[Li+14] Bing Li et al. ‘Implementation of LZMA compression algorithm
on FPGA’. In: Electronics Letters 50.21 (2014), pp. 1522–1524.
issn: 0013-5194. doi: 10.1049/el.2014.1734.

Imperial College London, Department of Computing 71

http://dx.doi.org/10.1093/nar/18.8.2163
http://dx.doi.org/10.1093/nar/gks754
http://dx.doi.org/10.1093/bioinformatics/btu387
http://dx.doi.org/10.1126/science.1197891
http://dx.doi.org/10.1126/science.1197891
http://dx.doi.org/10.1093/bioinformatics/btv071
http://dx.doi.org/10.1007/978-3-642-24583-1_41
http://dx.doi.org/10.1109/18.841160
http://dx.doi.org/10.4172/2168-9695.100011
http://dx.doi.org/10.4172/2168-9695.100011
http://dx.doi.org/10.1049/el.2014.1734

Bibliography

[Mah14] Matt Mahoney. The ZPAQ Open Standard Format for Highly
Compressed Data – Level 2. Open Standard. Version 2.04. Dell
Inc., 2014. url: http://mattmahoney.net/dc/zpaq204.pdf
(visited on 13/04/2015).

[Mar08] Elaine R. Mardis. ‘The impact of next-generation sequencing
technology on genetics’. In: Trends in Genetics 24.3 (2008),
pp. 133–141. issn: 0168-9525. doi: 10.1016/j.tig.2007.12.
007.

[Mar79] G. N. N. Martin. Range encoding: an algorithm for remov-
ing redundancy from a digitised message. Conference Paper.
Southampton: IBM UK Scientific Center, 1979.

[Mas+10] ChristopherE. Mason et al. ‘Standardizing the Next Gener-
ation of Bioinformatics Software Development with BioHDF
(HDF5)’. In: Advances in Computational Biology. Ed. by Hamid
R. Arabnia. Vol. 680. Advances in Experimental Medicine and
Biology. Springer New York, 2010, pp. 693–700. isbn: 978-1-
4419-5912-6. doi: 10.1007/978-1-4419-5913-3_77.

[Mee14] Mary Meeker. ‘Internet Trends 2014 – Code Conference’. In:
2014. url: http://s3.amazonaws.com/kpcbweb/files/
85/Internet%5C_Trends%5C_2014%5C_vFINAL%5C_-%5C_
05%5C_28%5C_14- %5C_PDF.pdf?1401286773 (visited on
31/03/2015).

[MG77] Allan M. Maxam and Walter Gilbert. ‘A new method for
sequencing DNA’. In: Proceedings of the National Academy of
Sciences 74.2 (1977), pp. 560–564.

[MSI00] T. Matsumoto, K. Sadakane and H. Imai. ‘Biological sequence
compression algorithms’. In: Genome Inform Ser Workshop
Genome Inform 11 (2000), pp. 43–52.

[NCB07] National Center for Biotechnology Information. Query Input
and database selection. 2007. url: http://blast.ncbi.nlm.
nih.gov/blastcgihelp.shtml (visited on 01/04/2015).

[Now10] Minou Nowrousian. ‘Next-Generation Sequencing Techniques
for Eukaryotic Microorganisms: Sequencing-Based Solutions to
Biological Problems’. In: Eukaryotic Cell 9.9 (2010), pp. 1300–
1310. doi: 10.1128/EC.00123-10.

[NW99] C. G. Nevill-Manning and I. H. Witten. ‘Protein is incompress-
ible’. In: Proceedings DCC’99 Data Compression Conference
(Cat. No. PR00096) (1999). issn: 1068-0314. doi: 10.1109/
DCC.1999.755675.

Imperial College London, Department of Computing 72

http://mattmahoney.net/dc/zpaq204.pdf
http://dx.doi.org/10.1016/j.tig.2007.12.007
http://dx.doi.org/10.1016/j.tig.2007.12.007
http://dx.doi.org/10.1007/978-1-4419-5913-3_77
http://s3.amazonaws.com/kpcbweb/files/85/Internet%5C_Trends%5C_2014%5C_vFINAL%5C_-%5C_05%5C_28%5C_14-%5C_PDF.pdf?1401286773
http://s3.amazonaws.com/kpcbweb/files/85/Internet%5C_Trends%5C_2014%5C_vFINAL%5C_-%5C_05%5C_28%5C_14-%5C_PDF.pdf?1401286773
http://s3.amazonaws.com/kpcbweb/files/85/Internet%5C_Trends%5C_2014%5C_vFINAL%5C_-%5C_05%5C_28%5C_14-%5C_PDF.pdf?1401286773
http://blast.ncbi.nlm.nih.gov/blastcgihelp.shtml
http://blast.ncbi.nlm.nih.gov/blastcgihelp.shtml
http://dx.doi.org/10.1128/EC.00123-10
http://dx.doi.org/10.1109/DCC.1999.755675
http://dx.doi.org/10.1109/DCC.1999.755675

Bibliography

[PS08] Mihai Pop and Steven L. Salzberg. ‘Bioinformatics challenges
of new sequencing technology’. In: Trends in Genetics 24.3
(2008), pp. 142–149. doi: 10.1016/j.tig.2007.12.006.

[PS11] Pavel Pevzner and Ron Shamir, eds. Bioinformatics for Biolo-
gists. Cambridge University Press, 2011. isbn: 9780511984570.
doi: 10.1017/CBO9780511984570.

[RBK07] Suzanne Rigler, William Bishop and Andrew Kennings. ‘FPGA-
based lossless data compression using Huffman and LZ77 al-
gorithms’. In: Canadian Conference on Electrical and Com-
puter Engineering (2007), pp. 1235–1238. issn: 08407789. doi:
10.1109/CCECE.2007.315.

[RD14a] Łukasz Roguski and Sebastian Deorowicz. DSRC 2 – Industry-
oriented compression of FASTQ files. Supplementary material.
Supplementary Material. 2014.

[RD14b] Łukasz Roguski and Sebastian Deorowicz. ‘DSRC 2 – Industry-
oriented compression of FASTQ files’. In: Bioinformatics 30.15
(2014), pp. 2213–2215. issn: 1367-4803, 1460-2059. doi: 10.
1093/bioinformatics/btu208.

[Rei09] Jorge S. Reis-Filho. ‘Next-generation sequencing’. In: Breast
Cancer Research 11.Suppl 3 (2009). doi: 10.1186/bcr2431.

[RFC1951] P. Deutsch. DEFLATE Compressed Data Format Specification
version 1.3. Request for Comments. Network Working Group,
May 1996. url: http://www.ietf.org/rfc/rfc1951.txt
(visited on 13/04/2015).

[RFC1952] P. Deutsch. GZIP file format specification version 4.3. Request
for Comments. Network Working Group, May 1996. url: http:
//www.ietf.org/rfc/rfc1952.txt (visited on 13/04/2015).

[Rig07] Suzanne Rigler. ‘FPGA-Based Lossless Data Compression
Using GNU Zip’. Master’s thesis. University of Waterloo, 2007.

[RK15] Strahil Ristov and Damir Korenčić. ‘Using static suffix array in
dynamic application: Case of text compression by longest first
substitution’. In: Information Processing Letters 115 (2015),
pp. 175–181. issn: 00200190. doi: 10.1016/j.ipl.2014.08.
014.

[Rob+04] Michael Roberts et al. ‘Reducing storage requirements for bio-
logical sequence comparison’. In: Bioinformatics 20.18 (2004),
pp. 3363–3369. doi: 10.1093/bioinformatics/bth408.

Imperial College London, Department of Computing 73

http://dx.doi.org/10.1016/j.tig.2007.12.006
http://dx.doi.org/10.1017/CBO9780511984570
http://dx.doi.org/10.1109/CCECE.2007.315
http://dx.doi.org/10.1093/bioinformatics/btu208
http://dx.doi.org/10.1093/bioinformatics/btu208
http://dx.doi.org/10.1186/bcr2431
http://www.ietf.org/rfc/rfc1951.txt
http://www.ietf.org/rfc/rfc1952.txt
http://www.ietf.org/rfc/rfc1952.txt
http://dx.doi.org/10.1016/j.ipl.2014.08.014
http://dx.doi.org/10.1016/j.ipl.2014.08.014
http://dx.doi.org/10.1093/bioinformatics/bth408

Bibliography

[SC75] Frederick Sanger and Alan R. Coulson. ‘A rapid method for
determining sequences in DNA by primed synthesis with DNA
polymerase’. In: Journal of Molecular Biology 94.3 (1975),
pp. 441–448. issn: 0022-2836. doi: 10.1016/0022-2836(75)
90213-2.

[Sew07] Julian Seward. bzip2 and libbzip2. A program and library for
data compression. Version 1.0.5. 2007. url: http : / / www .
bzip.org/1.0.5/bzip2- manual- 1.0.5.pdf (visited on
13/04/2015).

[SFS15a] The SAM/BAM Format Specification Working Group. CRAM
format specification. Tech. rep. Version 3. 2015. url: http:
//samtools.github.io/hts-specs/CRAMv3.pdf (visited on
01/04/2015).

[SFS15b] The SAM/BAM Format Specification Working Group. Se-
quence Alignment/Map Format Specification. Tech. rep. Ver-
sion 1. 2015. url: http://samtools.github.io/hts-specs/
SAMv1.pdf (visited on 01/04/2015).

[Shk02] Dmitry Shkarin. ‘PPM: one step to practicality’. In: Data
Compression Conference, 2002. Proceedings. DCC 2002. 2002,
pp. 202–211. doi: 10.1109/DCC.2002.999958.

[SNC77] Frederick Sanger, S. Nicklen and Alan R. Coulson. ‘DNA
sequencing with chain-terminating inhibitors’. In: Proceedings
of the National Academy of Sciences of the United States of
America 74.12 (1977), pp. 5463–5467. issn: 0027-8424. doi:
10.1073/pnas.74.12.5463.

[SS82] James A. Storer and Thomas G. Szymanski. ‘Data Compres-
sion via Textual Substitution’. In: J. ACM 29.4 (Oct. 1982),
pp. 928–951. issn: 0004-5411. doi: 10.1145/322344.322346.

[SV96] S.C. Sahinalp and U. Vishkin. ‘Efficient approximate and
dynamic matching of patterns using a labeling paradigm’. In:
Foundations of Computer Science, 1996. Proceedings., 37th
Annual Symposium on. Oct. 1996, pp. 320–328. doi: 10.1109/
SFCS.1996.548491.

[Tan14] Li Tan. ‘K-means Clustering Based Compression Algorithm for
the High-throughput DNA Sequence’. In: (2014), pp. 952–955.

[Vid+11] S. M. Vidanagamachchi et al. ‘Tile optimization for area in
FPGA based hardware acceleration of peptide identification’.
In: Industrial and Information Systems (ICIIS), 2011 6th IEEE
International Conference on. Aug. 2011, pp. 140–145. doi:
10.1109/ICIINFS.2011.6038056.

Imperial College London, Department of Computing 74

http://dx.doi.org/10.1016/0022-2836(75)90213-2
http://dx.doi.org/10.1016/0022-2836(75)90213-2
http://www.bzip.org/1.0.5/bzip2-manual-1.0.5.pdf
http://www.bzip.org/1.0.5/bzip2-manual-1.0.5.pdf
http://samtools.github.io/hts-specs/CRAMv3.pdf
http://samtools.github.io/hts-specs/CRAMv3.pdf
http://samtools.github.io/hts-specs/SAMv1.pdf
http://samtools.github.io/hts-specs/SAMv1.pdf
http://dx.doi.org/10.1109/DCC.2002.999958
http://dx.doi.org/10.1073/pnas.74.12.5463
http://dx.doi.org/10.1145/322344.322346
http://dx.doi.org/10.1109/SFCS.1996.548491
http://dx.doi.org/10.1109/SFCS.1996.548491
http://dx.doi.org/10.1109/ICIINFS.2011.6038056

Bibliography

[WAA12] Raymond Wan, Vo Ngoc Anh and Kiyoshi Asai. ‘Transform-
ations for the compression of FASTQ quality scores of next-
generation sequencing data’. In: Bioinformatics 28.5 (2012),
pp. 628–635. issn: 13674803. doi: 10.1093/bioinformatics/
btr689.

[WBC13] F. Winterstein, S. Bayliss and G. A. Constantinides. ‘FPGA-
based K-means clustering using tree-based data structures’. In:
Field Programmable Logic and Applications (FPL), 2013 23rd
International Conference on. Sept. 2013. doi: 10.1109/FPL.
2013.6645501.

[WBL13] Sebastian Wandelt, Marc Bux and Ulf Leser. ‘Trends in Gen-
ome Compression’. In: Current Bioinformatics 9 (2013). issn:
15748936.

[Wel84] Terry A. Welch. ‘Technique for High-Performance Data Com-
pression’. In: Computer 17.6 (1984), pp. 8–19. issn: 00189162.
doi: 10.1109/MC.1984.1659158.

[WikiBzip2] Bzip2 — Wikipedia, The Free Encyclopedia. Wikipedia. 2015.
url: http://en.wikipedia.org/w/index.php?title=
Bzip2%5C&oldid=656033049 (visited on 13/04/2015).

[WL13] Sebastian Wandelt and Ulf Leser. ‘FRESCO: Referential Com-
pression of Highly-Similar Sequences’. In: IEEE/ACM Trans-
actions on Computational Biology and Bioinformatics 10.5
(2013). issn: 1545-5963. doi: 10.1109/TCBB.2013.122.

[Yu+15] Y William Yu et al. ‘Quality score compression improves geno-
typing accuracy’. In: Nature Biotechnology 33.3 (2015), pp. 240–
243. issn: 1087-0156. doi: 10.1038/nbt.3170.

[ZL77] J. Ziv and A. Lempel. ‘A universal algorithm for sequential
data compression’. In: IEEE Transactions on Information
Theory 23.3 (1977). issn: 0018-9448. doi: 10.1109/TIT.1977.
1055714.

[ZL78] J. Ziv and A. Lempel. ‘Compression of individual sequences via
variable-rate coding’. In: IEEE Transactions on Information
Theory 24.5 (1978), pp. 530–536. issn: 0018-9448. doi: 10.
1109/TIT.1978.1055934.

Imperial College London, Department of Computing 75

http://dx.doi.org/10.1093/bioinformatics/btr689
http://dx.doi.org/10.1093/bioinformatics/btr689
http://dx.doi.org/10.1109/FPL.2013.6645501
http://dx.doi.org/10.1109/FPL.2013.6645501
http://dx.doi.org/10.1109/MC.1984.1659158
http://en.wikipedia.org/w/index.php?title=Bzip2%5C&oldid=656033049
http://en.wikipedia.org/w/index.php?title=Bzip2%5C&oldid=656033049
http://dx.doi.org/10.1109/TCBB.2013.122
http://dx.doi.org/10.1038/nbt.3170
http://dx.doi.org/10.1109/TIT.1977.1055714
http://dx.doi.org/10.1109/TIT.1977.1055714
http://dx.doi.org/10.1109/TIT.1978.1055934
http://dx.doi.org/10.1109/TIT.1978.1055934

	List of Figures
	List of Tables
	List of Codes
	Introduction
	Theoretical Background
	Structure of Genetic Information
	Sequencing Data Storage Formats

	Compression Techniques
	Specialised Compression Approaches
	Substitutional
	Statistical
	Grammatical
	Referential
	Chaotic

	Objectives of Compression of Genetic Sequencing Data

	Algorithms
	General Purpose Compressors
	gzip
	bzip2
	ZPAQ

	fastqz
	fqzcomp
	Quip
	Framework For Referential Sequence Compression (FRESCO)
	Genome Differential Compressor (GDC 2)
	DNA Sequence Reads Compression (DSRC 2)
	Overlapping Reads Compression With Minimizers (ORCOM)
	SeqDB
	Sequence Compression Algorithm Using Locally Consistent Encoding (SCALCE)
	kpath

	Evaluation
	Hardware, Software and Test Data
	Results

	Discussion
	Compression Ratio
	Compression Techniques
	File Structure

	(De-)Compression Throughput
	Applications in Hardware

	Conclusion
	Additional Tables
	Additional Code
	Bibliography

